精英家教网 > 高中数学 > 题目详情
6.已知角α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点P(-$\frac{3}{5}$,$\frac{4}{5}$)
(1)求sinα
(2)求$\frac{sin2α+cos2α+1}{1+tanα}$的值.

分析 (1)利用任意角的三角函数的定义,求得sinα的值.
(2)利用同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)由三角函数定义得 x=-$\frac{3}{5}$,y=$\frac{4}{5}$,r=|OP|=1,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$,cosα=$\frac{x}{r}$=-$\frac{3}{5}$.
(2)原式=$\frac{2sinαcosα+{2cos}^{2}α-1+1}{1+\frac{sinα}{cosα}}$=$\frac{(2sinαcosα+{2cos}^{2}α)•cosα}{cosα+sinα}$=2cos2α=$\frac{18}{25}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,点(1,0)与点(2,π)的距离为(  )
A.1B.3C.$\sqrt{1+{π^2}}$D.$\sqrt{9+{π^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=-$\frac{1}{x}$在(1,-1)处的切线的斜率为(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线方程为x2-y2=4,过点A(3,1)作直线l与该双曲线交于M,N两点,若点A恰好为MN中点,则直线l的方程为(  )
A.y=3x-8B.y=-3x+8C.y=3x-10D.y=-3x+10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知偶函数f(x)在[-1,0]上为单调增函数,则(  )
A.f(sin$\frac{π}{8}$)<f(cos$\frac{π}{8}$)B.f(sin1)>f(cos1)
C.f(sin$\frac{π}{12}$)<f(sin$\frac{5π}{12}$)D.f(sin$\frac{π}{12}$)>f(tan$\frac{π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$满足:|${\overrightarrow a}$|=|${\overrightarrow b}$|=1,$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{2}$,<$\overrightarrow a$-$\overrightarrow c$,$\overrightarrow b$-$\overrightarrow c$>=60°,则|${\overrightarrow c}$|的最大值为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanα=3,则$\frac{2sinα-cosα}{4sinα+3cosα}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知{an}是公差为1的等差数列,Sn为{an}的前n项和,若S8=4S4,则a9等于(  )
A.$\frac{17}{2}$B.$\frac{19}{2}$C.9D.10

查看答案和解析>>

同步练习册答案