| A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(-1,0) | D. | (0,1)∪(1,+∞) |
分析 由已知当x>0时总有xf′(x)-f(x)<0成立,可判断函数g(x)=$\frac{f(x)}{x}$为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(-∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.
解答 解:设g(x)=$\frac{f(x)}{x}$,则g(x)的导数为:g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,![]()
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)=$\frac{f(x)}{x}$为减函数,
又∵g(-x)=$\frac{f(-x)}{-x}$=$\frac{-f(x)}{-x}$=$\frac{f(x)}{x}$=g(x),
∴函数g(x)为定义域上的偶函数
又∵g(-1)=$\frac{f(-1)}{-1}$=0,
∴函数g(x)的图象性质类似如图:
数形结合可得,不等式f(x)>0?x•g(x)>0
?$\left\{\begin{array}{l}{x>0}\\{g(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<0}\end{array}\right.$,
?0<x<1或x<-1.
故选:A.
点评 本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+5=0或2x+y-5=0 | B. | 2x+y+$\sqrt{5}$=0或2x+y-$\sqrt{5}$=0 | ||
| C. | 2x-y+5=0或2x-y-5=0 | D. | 2x-y+$\sqrt{5}$=0或2x-y-$\sqrt{5}$=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)=-x2(x∈R)存在1级“理想区间” | |
| B. | 函数f(x)=ex(x∈R)不存在2级“理想区间” | |
| C. | 函数f(x)=$\frac{4x}{{x}^{2}+1}$(x≥0)存在3级“理想区间” | |
| D. | 函数f(x)=loga(ax-$\frac{1}{4}$)(a>0,a≠1)不存在4级“理想区间” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com