【题目】如图,在三棱柱ABC-A1B1C1中,△ABC和△AA1C均是边长为2的等边三角形,点O为AC中点,平面AA1C1C⊥平面ABC.
![]()
(1)证明:A1O⊥平面ABC;
(2)求直线AB与平面A1BC1所成角的正弦值.
【答案】(1)见证明;(2)![]()
【解析】
(1)由AA1=A1C,且O为AC的中点,得A1O⊥AC,根据面面垂直的性质定理,即可证得A1O⊥平面ABC;
(2)以O为原点,OB,OC,OA1为x,y,z轴,建立空间直角坐标系,求得平面A1BC1的一个法向量,利用向量的夹角公式,即可求解.
(1)证明:∵AA1=A1C,且O为AC的中点,
∴A1O⊥AC,
又∵平面AA1C1C⊥平面ABC,且交线为AC,又A1O平面AA1C1C,
∴A1O⊥平面ABC;
(2)如图,以O为原点,OB,OC,OA1为x,y,z轴,建立空间直角坐标系.
![]()
由已知可得O(0,0,0)A(0,-1,0)
,
,![]()
平面A1BC1的法向量为
,
则有
,
所以
的一组解为
,
设直线AB与平面A1BC1所成角为
,
则![]()
又∵
,
所以直线AB与平面A1BC1所成角的正弦值:
.
科目:高中数学 来源: 题型:
【题目】有下列命题:①边长为1的正四面体的内切球半径为
;
②正方体的内切球、棱切球(正方体的每条棱都与球相切)、外接球的半径之比为1:
;
③棱长为1的正方体ABCD-A1B1C1D1的内切球被平面A1BD截得的截面面积为
.
其中正确命题的序号是______(请填所有正确命题的序号);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法错误的是( )
A. 若“
”为假命题,则p,q均为假命题
B. “
”是“
”的充分不必要条件
C. “
”的必要不充分条件是“
”
D. 若命题p:
,
,则命题
:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,且
.
(1)求实数
的值,并指出函数
的定义域;
(2)将函数
图象上的所有点向右平行移动1个单位得到函数
的图象,写出函数
的表达式;
(3)对于(2)中的
,关于
的函数
在
上的最小值为2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018衡水金卷(二)】如图,矩形
中,
且
,
交
于点
.
![]()
(I)若点
的轨迹是曲线
的一部分,曲线
关于
轴、
轴、原点都对称,求曲线
的轨迹方程;
(II)过点
作曲线
的两条互相垂直的弦
,四边形
的面积为
,探究
是否为定值?若是,求出此定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
、
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
、
两点.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当四边形
面积取最大值时,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com