精英家教网 > 高中数学 > 题目详情
11.已知数列{an}为等差数列,Sn为其前n项和,且a2=4,S5=30,数列{bn}满足b1+2b2+…+nbn=an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:b1b2+b2b3+…+bnbn+1<4.

分析 (I)利用等差数列的通项公式及其前n项和公式即可得出;
(II)利用递推关系、“裂项求和”方法即可得出.

解答 解:(Ⅰ)设数列{an}的公差为d,由a2=4,S5=30,
可得:$\left\{\begin{array}{l}{a_1}+d=4\\ 5{a_1}+\frac{5×4}{2}d=30\end{array}\right.$,
解得a1=2,d=2,
故数列{an}的通项公式为:an=2+(n-1)×2=2n.
(Ⅱ)由(1)可得b1+2b2+…+nbn=2n①
所以当n≥2时,b1+2b2+…+(n-1)bn-1=2(n-1)②
①-②得nbn=2,即${b_n}=\frac{2}{n}$,
又b1=a1=2也满足${b_n}=\frac{2}{n}$,∴${b_n}=\frac{2}{n},n∈{N^+}$.
∴${b_n}•{b_{n+1}}=\frac{4}{n(n+1)}=4(\frac{1}{n}-\frac{1}{n+1})$,
∴${b_1}{b_2}+{b_2}{b_3}+…+{b_n}b_{n+1}^{\;}=4(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})=4(1-\frac{1}{n+1})<4$.

点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某研究机构对学生的记忆力x和判断力y进行统计分析,得下表数据:
x681012
y2356
根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a中的b的值为0.7,则a为(  )
A.1.2B.-1.2C.-2.3D.7.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用“秦九韶算法”计算多项式f(x)=x4+x-1,当x=2014时的值的过程中,需要做的加法运算和乘法运算次数分别是(  )
A.2,4B.4,4C.2,0D.4,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,直线在平面α外,直线m1,m2,n均在平面α内,若m1∥m2,且m1,m2均与n相交,下列能证明l⊥α的是(  )
A.l⊥m1且l⊥m2B.l⊥m1且l⊥nC.l⊥m1D.l⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若a,b∈(0,+∞)且a+b=3,求$\sqrt{1+a}$+$\sqrt{1+b}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x3-$\frac{ln|x|}{x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,角A、B、C的对边分别为a、b、c,若cosA=$\frac{7}{8}$,a=2,3sinC=4sinB.
(Ⅰ)求b,c的值;
(Ⅱ)若等差数列{an}中a1=a,a2=b.
(ⅰ)求数列{an}的通项公式;
(ⅱ)设bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的半径为$\sqrt{2}$,圆心C的极坐标为($\sqrt{2}$,$\frac{π}{4}$),曲线C1:$\left\{\begin{array}{l}{x=3cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(1)在极坐标系中,直线l:$θ=\frac{π}{3}$(ρ∈R)与圆C交于A、B两点,求|AB|;
(Ⅱ)在(I)条件下,将直线l向右平移4个单位得到l′,设点P是曲线C1上的一个动点,求它到直线l′的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设复数z=$\frac{1-i}{1+i}$(i为虚数单位),则z=(  )
A.iB.-iC.2iD.-2i

查看答案和解析>>

同步练习册答案