精英家教网 > 高中数学 > 题目详情
1.设复数z=$\frac{1-i}{1+i}$(i为虚数单位),则z=(  )
A.iB.-iC.2iD.-2i

分析 直接利用复数的除法的运算法则化简复数为:a+bi的形式即可.

解答 解:复数z=$\frac{1-i}{1+i}$(i为虚数单位),
则z=$\frac{(1-i)(1-i)}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i.
故选:B.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,Sn为其前n项和,且a2=4,S5=30,数列{bn}满足b1+2b2+…+nbn=an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:b1b2+b2b3+…+bnbn+1<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{{ln({2x-{x^2}})}}{x-1}$的定义域为(0,1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:
命题p:若m=$\frac{1}{4}$,则f(f(-1)=0.
命题q:?m∈(-∞,0),方程f(x)=0有解.
那么,下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$\frac{sinB}{sinA+sinC}$=1-$\frac{sinC}{sinA+sinB}$,且b=5,acosC=-1.
(1)求角A;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求圆(x-3)2+y2=1关于点P(0,1)对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c的图象过A(x1,y1)、B(x2,y2)两点,且满足a2+(y1+y2)a+y1y2=0.
(1)证明y1=-a或y2=-a;
(2)证明函数f(x)的图象必与x轴有两个交点;
(3)若关于x的不等式f(x)>0的解为x<n或x>m(n<m<0),解关于x的不等式cx2-bx+a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正项等差数列{an}满足:Sn2=a13+a23+a33+…+an3,其中Sn是数列{an}的前n项和.
(I)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足:bn=$\frac{{2+{a_n}}}{{{2^{2+{a_n}}}{S_n}}}$,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直线l1:x+y-1=0,现将直线l1向上平移到直线l2的位置,若l2、l1和坐标轴围成的梯形面积为4,求l2的方程.

查看答案和解析>>

同步练习册答案