精英家教网 > 高中数学 > 题目详情
11.如图,已知直线l1:x+y-1=0,现将直线l1向上平移到直线l2的位置,若l2、l1和坐标轴围成的梯形面积为4,求l2的方程.

分析 先求出l2和坐标轴围成的面积为$\frac{9}{2}$,再设直线l2:x+y-m=0,求出直线l2与x,y轴的交点坐标,表示出三角形的面积,求出m的值,从而求出直线l的方程即可.

解答 解:直线直线l1:x+y-1=0与坐标轴所围成的面积为$\frac{1}{2}$×1×1=$\frac{1}{2}$,
∵l2、l1和坐标轴围成的梯形面积为4,
∴l2和坐标轴围成的面积为$\frac{9}{2}$,
∵l2∥l1
∴设直线l2:x+y-m=0,
当x=0,y=m,当y=0时,x=m,
∴$\frac{1}{2}$m2=$\frac{9}{2}$,
∴m=±3,
∵直线l1向上平移到直线l2的位置,
∴m=3,
∴l2的方程为x+y-3=0

点评 本题考查了求直线方程问题,考查直线的平行关系,三角形的面积问题,是一道中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设复数z=$\frac{1-i}{1+i}$(i为虚数单位),则z=(  )
A.iB.-iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b为空间两条不重合的直线,α,β为空间两个不重合的平面,则以下结论正确的是(  )
A.若α⊥β,a?α,则a⊥βB.若α⊥β,a⊥β,则a∥αC.若a?α,a∥β,则α∥βD.若a?α,a⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的不等式组$\left\{\begin{array}{l}{{x}^{3}+3{x}^{2}-x-3>0}\\{{x}^{2}-2ax-1≤0}\end{array}\right.$(a>0)的整数解有且仅有一个,则a的取值范围为(  )
A.[$\frac{3}{4}$,$\frac{4}{3}$]B.[$\frac{3}{4}$,$\frac{4}{3}$)C.($\frac{3}{4}$,$\frac{4}{3}$)D.($\frac{3}{4}$,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列各式的值:
(1)sin[arcsin$\frac{1}{2}$+arccos(-$\frac{\sqrt{3}}{2}$)];
(2)sin[arccos(-$\frac{12}{13}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x,y满足关系式x+y+1=0,则式子S=$\sqrt{{x}^{2}+{y}^{2}-2x-2y+2}$的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知射线OA:x-y=0(x≥0),OB:x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA,OB于点A,B,AB的中点为P.
(1)求直线AB的方程;
(2)过点C(6,-1)作直线l,使得A,B两点到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足x2-2xy+3y2=4,则$\frac{1}{{x}^{2}+{y}^{2}}$的最大值与最小值的和是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.各项均不相等的等差数列{an}前n项和为Sn,已知S5=40,且a1,a3,a7成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)令bn=(-1)n$\frac{2n+3}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案