精英家教网 > 高中数学 > 题目详情
2.过抛物线C:y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),如果x1+x2=9,那么|AB|=(  )
A.11B.10C.6D.4

分析 抛物线 y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,故|AB|=x1+x2+2,由此易得弦长值.

解答 解:由题意,p=2,故抛物线的准线方程是x=-1,
∵抛物线 y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,
∴|AB|=x1+x2+2,
又x1+x2=9.
∴∴|AB|=x1+x2+2=11.
故选:A.

点评 本题考查抛物线的简单性质,解题的关键是理解到焦点的距离与到准线的距离相等,由此关系将求弦长的问题转化为求点到线的距离问题,大大降低了解题难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)求函数f(x)=cos2x-sinx的最大值;
(2)求函数f(x)=cos2x-asinx的最小值.(用含a的代数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.鸡年春节期间,国人发微信拜年已成为一种时尚,若小李的40名同事中,给其发微信拜年的概率为1,0.8,0.5,0的人数分别为8,15,14,3(人),则通常情况下,小李应收到同事的拜年的微信数为(  )
A.27B.37C.38D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于两个复数$α=\frac{1}{2}+\frac{{\sqrt{3}}}{2}i,β=-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$,有下列四个结论:
①αβ=1;
②$\frac{α}{β}=1$;
③$|{\frac{α}{β}}|=1$;
④α22=1
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三点不能构成三角形,则实数k应满足的条件是(  )
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(α)=$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{2sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.
(1)化简f(α);
(2)若$α=-\frac{25}{4}π$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-2lnx-$\frac{a}{x}$+1,g(x)=ex(2lnx-x)+b.
(1)若函数f(x)在定义域上是增函数,求a的取值范围;
(2)若g(x)=0有解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M(x,y)在圆x2+(y-2)2=1上运动,则$\frac{xy}{{4{x^2}+{y^2}}}$的取值范围是(  )
A.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)B.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)∪{0}C.$[{-\frac{1}{4},0})∪({0,\frac{1}{4}}]$D.$[{-\frac{1}{4},\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方体ABCD-A1B1C1D1中,E,F,H分别为A1B1,B1C1,CC1的中点.
(Ⅰ)证明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一点G,使得AG∥平面BEF?若存在,求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案