精英家教网 > 高中数学 > 题目详情
1.如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、
(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.

分析 (1)OA=2$\sqrt{4{0}^{2}-{x}^{2}}$=2$\sqrt{1600-{x}^{2}}$,可得y=f(x)=2x$\sqrt{1600-{x}^{2}}$,x∈(0,40).
(2)平方利用基本不等式的性质即可得出.

解答 解:(1)AB=2OA=2$\sqrt{4{0}^{2}-{x}^{2}}$=2$\sqrt{1600-{x}^{2}}$,
∴y=f(x)=2x$\sqrt{1600-{x}^{2}}$,x∈(0,40).
(2)y2=4x2(1600-x2)≤4×$(\frac{{x}^{2}+1600-{x}^{2}}{2})^{2}$=16002,即y≤1600,当且仅当x=20$\sqrt{2}$时取等号.
∴截取AD=20$\sqrt{2}$时,才能使矩形材料ABCD的面积最大,最大面积为1600.

点评 本题考查了函数的性质、矩形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若一个椭圆的内接正方形有两边分别经过它的两个焦点,则此椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=log2(2+|x|)-$\frac{1}{2+{x}^{2}}$,则使得f(x-1)>f(2x)成立的x取值范围是(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)=5|x|-$\frac{1}{1+{x}^{2}}$,则使得f(2x+1)>f(x)成立的x取值范围是(  )
A.(-1,-$\frac{1}{3}$)B.(-3,-1)C.(-1,+∞)D.(-∞,-1)∪(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点(1,0)到双曲线$\frac{x^2}{4}-{y^2}=1$的渐近线的距离是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x、y∈R,且x>y>0,则(  )
A.$\frac{1}{x}-\frac{1}{y}>0$B.${(\frac{1}{2})^x}-{(\frac{1}{2})^y}<0$C.log2x+log2y>0D.sinx-siny>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a、b为实数,则“a<1”是“$\frac{1}{a}>1$”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0),点     Q(0,y0)在线段AB的垂直平分线上,且$\overrightarrow{QA}$•$\overrightarrow{QB}$=4,求y0的值.

查看答案和解析>>

同步练习册答案