·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º½¹µãÔÚxÖáÉÏ£¬¹ýµãA£¨2£¬0£©£¬B£¨0£¬1£©Á½µã£¬Ôòa=2£¬b=1£®c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£»¼´¿ÉÇóµÃÍÖÔ²CµÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½£¬ÇóµÃÖеãMµÄ×ø±ê£¬·ÖÀ࣬¢Ùµ±k=0ʱ£¬µãBµÄ×ø±êΪ£¨2£¬0£©£¬ÓÉ$\overrightarrow{QA}$•$\overrightarrow{QB}$=4£¬µÃy0=¡À2$\sqrt{2}$£®¢Úµ±k¡Ù0ʱ£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-$\frac{2k}{1+4k2}$=-$\frac{1}{k}$£¨x+$\frac{8k2}{1+4k2}$£©£®ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£®¼´¿ÉÇóµÃÇóµÃy0µÄÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½¹µãÔÚxÖáÉÏ£¬
¹ýµãA£¨2£¬0£©£¬B£¨0£¬1£©Á½µã£®
¡àa=2£¬b=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
ÓÖc=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$£¬
¡àÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£»
£¨2£©ÓÉ£¨1£©¿ÉÖªA£¨-2£¬0£©£®
ÉèBµãµÄ×ø±êΪ£¨x1£¬y1£©£¬Ö±ÏßlµÄбÂÊΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£®
ÓÚÊÇA£¬BÁ½µãµÄ×ø±êÂú×ã·½³Ì×é$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬
ÓÉ·½³Ì×éÏûÈ¥y²¢ÕûÀí£¬µÃ£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£®
ÓÉ-2x1=$\frac{16k2-4}{1+4k2}$£¬µÃx1=$\frac{2-8k2}{1+4k2}$£®
´Ó¶øy1=$\frac{4k}{1+4k2}$£®
ÉèÏß¶ÎABµÄÖеãΪM£¬
ÔòMµÄ×ø±êΪ£¨-$\frac{8k2}{1+4k2}$£¬$\frac{2k}{1+4k2}$£©£®
ÒÔÏ·ÖÁ½ÖÖÇé¿ö£º
¢Ùµ±k=0ʱ£¬µãBµÄ×ø±êΪ£¨2£¬0£©£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßΪyÖᣬÓÚÊÇ$\overrightarrow{QA}$=£¨-2£¬-y0£©£¬$\overrightarrow{QB}$=£¨2£¬-y0£©£®
ÓÉ$\overrightarrow{QA}$•$\overrightarrow{QB}$=4£¬µÃy0=¡À2$\sqrt{2}$£®
¢Úµ±k¡Ù0ʱ£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪ
y-$\frac{2k}{1+4k2}$=-$\frac{1}{k}$£¨x+$\frac{8k2}{1+4k2}$£©£®
Áîx=0£¬½âµÃy0=-$\frac{6k}{1+4k2}$£®
ÓÉ$\overrightarrow{QA}$=£¨-2£¬-y0£©£¬$\overrightarrow{QB}$=£¨x1£¬y1-y0£©£®
$\overrightarrow{QA}$•$\overrightarrow{QB}$=-2x1-y0£¨y1-y0£©
=$\frac{-2?2-8k2?}{1+4k2}$+$\frac{6k}{1+4k2}$£¨$\frac{4k}{1+4k2}$+$\frac{6k}{1+4k2}$£©
=$\frac{4?16k4+15k2-1?}{?1+4k2?2}$=4£¬
ÕûÀíµÃ7k2=2£¬¹Êk=¡À$\frac{\sqrt{14}}{7}$£®ËùÒÔy0=¡À$\frac{2\sqrt{14}}{5}$£®
×ÛÉÏ£¬y0=¡À2$\sqrt{2}$»òy0=¡À$\frac{2\sqrt{14}}{5}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½¼°ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬1] | B£® | £¨-1£¬1£© | C£® | £¨-1£¬1] | D£® | £¨-1£¬0£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 576ÖÖ | B£® | 504ÖÖ | C£® | 288ÖÖ | D£® | 252ÖÖ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com