11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãA£¨2£¬0£©£¬B£¨0£¬1£©Á½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨2£©ÉèÖ±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£®ÒÑÖªµãAµÄ×ø±êΪ£¨-a£¬0£©£¬µã     Q£¨0£¬y0£©ÔÚÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬ÇÒ$\overrightarrow{QA}$•$\overrightarrow{QB}$=4£¬Çóy0µÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º½¹µãÔÚxÖáÉÏ£¬¹ýµãA£¨2£¬0£©£¬B£¨0£¬1£©Á½µã£¬Ôòa=2£¬b=1£®c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£»¼´¿ÉÇóµÃÍÖÔ²CµÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½£¬ÇóµÃÖеãMµÄ×ø±ê£¬·ÖÀ࣬¢Ùµ±k=0ʱ£¬µãBµÄ×ø±êΪ£¨2£¬0£©£¬ÓÉ$\overrightarrow{QA}$•$\overrightarrow{QB}$=4£¬µÃy0=¡À2$\sqrt{2}$£®¢Úµ±k¡Ù0ʱ£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-$\frac{2k}{1+4k2}$=-$\frac{1}{k}$£¨x+$\frac{8k2}{1+4k2}$£©£®ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£®¼´¿ÉÇóµÃÇóµÃy0µÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½¹µãÔÚxÖáÉÏ£¬
¹ýµãA£¨2£¬0£©£¬B£¨0£¬1£©Á½µã£®
¡àa=2£¬b=1£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
ÓÖc=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$£¬
¡àÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£»
£¨2£©ÓÉ£¨1£©¿ÉÖªA£¨-2£¬0£©£®
ÉèBµãµÄ×ø±êΪ£¨x1£¬y1£©£¬Ö±ÏßlµÄбÂÊΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£®
ÓÚÊÇA£¬BÁ½µãµÄ×ø±êÂú×ã·½³Ì×é$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬
ÓÉ·½³Ì×éÏûÈ¥y²¢ÕûÀí£¬µÃ£¨1+4k2£©x2+16k2x+£¨16k2-4£©=0£®
ÓÉ-2x1=$\frac{16k2-4}{1+4k2}$£¬µÃx1=$\frac{2-8k2}{1+4k2}$£®
´Ó¶øy1=$\frac{4k}{1+4k2}$£®
ÉèÏß¶ÎABµÄÖеãΪM£¬
ÔòMµÄ×ø±êΪ£¨-$\frac{8k2}{1+4k2}$£¬$\frac{2k}{1+4k2}$£©£®
ÒÔÏ·ÖÁ½ÖÖÇé¿ö£º
¢Ùµ±k=0ʱ£¬µãBµÄ×ø±êΪ£¨2£¬0£©£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßΪyÖᣬÓÚÊÇ$\overrightarrow{QA}$=£¨-2£¬-y0£©£¬$\overrightarrow{QB}$=£¨2£¬-y0£©£®
ÓÉ$\overrightarrow{QA}$•$\overrightarrow{QB}$=4£¬µÃy0=¡À2$\sqrt{2}$£®
¢Úµ±k¡Ù0ʱ£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪ
y-$\frac{2k}{1+4k2}$=-$\frac{1}{k}$£¨x+$\frac{8k2}{1+4k2}$£©£®
Áîx=0£¬½âµÃy0=-$\frac{6k}{1+4k2}$£®
ÓÉ$\overrightarrow{QA}$=£¨-2£¬-y0£©£¬$\overrightarrow{QB}$=£¨x1£¬y1-y0£©£®
$\overrightarrow{QA}$•$\overrightarrow{QB}$=-2x1-y0£¨y1-y0£©
=$\frac{-2?2-8k2?}{1+4k2}$+$\frac{6k}{1+4k2}$£¨$\frac{4k}{1+4k2}$+$\frac{6k}{1+4k2}$£©
=$\frac{4?16k4+15k2-1?}{?1+4k2?2}$=4£¬
ÕûÀíµÃ7k2=2£¬¹Êk=¡À$\frac{\sqrt{14}}{7}$£®ËùÒÔy0=¡À$\frac{2\sqrt{14}}{5}$£®
×ÛÉÏ£¬y0=¡À2$\sqrt{2}$»òy0=¡À$\frac{2\sqrt{14}}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½¼°ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬Ôڰ뾶Ϊ40cmµÄ°ëÔ²ÐΣ¨OΪԲÐÄ£©ÂÁƤÉϽØÈ¡Ò»¿é¾ØÐβÄÁÏABCD£¬ÆäÖÐA£¬BÔÚÖ±¾¶ÉÏ£¬µãC£¬DÔÚÔ²ÖÜÉÏ¡¢
£¨1£©ÉèAD=x£¬½«¾ØÐÎABCDµÄÃæ»ýy±íʾ³ÉxµÄº¯Êý£¬²¢Ð´³öÆä¶¨ÒåÓò£»
£¨2£©ÔõÑù½ØÈ¡£¬²ÅÄÜʹ¾ØÐβÄÁÏABCDµÄÃæ»ý×î´ó£¿²¢Çó³ö×î´óÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®½â²»µÈʽ£¨$\frac{1}{2}$£©x-x+$\frac{1}{2}$£¾0ʱ£¬¿É¹¹Ô캯Êýf£¨x£©=£¨$\frac{1}{2}$£©x-x£¬ÓÉf£¨x£©ÔÚx¡ÊRÊǼõº¯Êý£¬¼°f£¨x£©£¾f£¨1£©£¬¿ÉµÃx£¼1£®ÓÃÀàËÆµÄ·½·¨¿ÉÇóµÃ²»µÈʽarcsinx2+arcsinx+x6+x3£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨0£¬1]B£®£¨-1£¬1£©C£®£¨-1£¬1]D£®£¨-1£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=3x-1£¬x¡Ê{x¡ÊN|1¡Üx¡Ü4}£¬Ôòº¯Êýf£¨x£©µÄÖµÓòΪ{2£¬5£¬8£¬11}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÉèÈ«¼¯ÎªR£¬A={x|2¡Üx£¼5 }   B={ x|x£¾4 }  Çó£º
¢ÙA¡ÉB       ¢ÚA¡ÈB       ¢ÛA¡É£¨∁RB£©       ¢Ü∁RA£©¡É£¨∁RB £©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªµãA£¨1£¬0£©£¬B£¨4£¬0£©£¬Ô²C£º£¨x-a£©2+£¨y-a£©2=1£¬ÈôÔ²CÉÏ´æÔÚµãM£¬Ê¹|MB|=2|MA|£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª-$\frac{\sqrt{6}}{2}$¡Üa¡Ü-$\frac{\sqrt{2}}{2}$»ò$\frac{\sqrt{2}}{2}$¡Üa¡Ü$\frac{\sqrt{6}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ¡÷ABCÖУ¬µãA£¨1£¬1£©£¬µãB£¨3£¬3£©£¬µãCÔÚxÖáÉÏ£¬µ±cos¡ÏACBÈ¡µÃ×îСֵʱ£¬µãCµÄ×ø±êΪ£¨$\sqrt{6}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®£¨¢ñ£©º¯Êýf£¨x£©Âú×ã¶ÔÈÎÒâµÄʵÊýx£¬y¶¼ÓÐf£¨xy£©=f£¨x£©+f£¨y£©£¬ÇÒf£¨4£©=2£¬Çóf£¨$\sqrt{2}$£©µÄÖµ£»
£¨¢ò£©ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉÏµÄÆæº¯Êý£¬ÇÒf£¨x£©ÔÚ[-1£¬1]ÉϵÝÔö£¬Çó²»µÈʽf£¨x+$\frac{1}{2}$£©+f£¨x-1£©£¼0
µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®4¸öÄÐÉú4¸öÅ®ÉúÕ¾³ÉÒ»ÅÅ£¬ÒªÇóÏàÁÚÁ½ÈËÐÔ±ð²»Í¬ÇÒÄÐÉú¼×ÓëÅ®ÉúÒÒÏàÁÚ£¬ÔòÕâÑùµÄÕ¾·¨ÓУ¨¡¡¡¡£©
A£®576ÖÖB£®504ÖÖC£®288ÖÖD£®252ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸