精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C的对边分别为a、b、c,若c=
3
,b=3,B=120°,则a等于(  )
A、
6
B、2
C、
3
D、
2
考点:正弦定理
专题:解三角形
分析:利用余弦定理列出关系式,将b,c,cosB的值代入即可求出a的值.
解答: 解:∵△ABC中,c=
3
,b=3,B=120°,
∴由余弦定理得:b2=a2+c2-2accosB,即9=a2+3+
3
a,
解得:a=
3
或a=-2
3
(舍去),
则a=
3

故选:C.
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知任意角θ以x轴的正半轴为始边,若终边经过点P(x0,y0)且|OP|=r(r>0).定义:sicosθ=
y0-x0
r
称“sicosθ”为“正余弦函数”,对于“正余弦函数”y=sicosx,有同学得到以下性质:
(1)该函数的值域[-
2
2
];
(2)该函数为奇函数,图象关于原点对称;
(3)该函数为非奇非偶函数,图象关于直线x=
4
对称;
(4)该函数为周期函数,且最小正周期为2π;
(5)该函数的单调递增区间为[2kπ-
π
4
,2kπ+
4
],k∈Z.
你认为这些性质正确的是
 
(填上你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC所在平面内一点,D为BC边中点,
AO
=
OD
且λ
OA
+
OB
+
OC
=
0
,则实数λ=(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:x+y-3=0分别与函数y=3x和y=log3x的交点为A(x1,y1)、B(x2,y2),则2(y1+y2)=(  )
A、4B、6C、8D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2},集合B满足A∪B={1,2,3},A∩B={1},则集合B的子集个数是(  )
A、2B、3C、4D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x2-x-2≥0
x2+x-2≤0
的解集用数轴表示为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足条件f(x+
3
2
)=-f(x),且函数y=f(x-
3
4
)是奇函数,给出以下
①函数f(x)是周期函数;
②函数f(x)的图象关于点(-
3
4
,0)对称;
③函数f(x)是偶函数:
④函数f(x)在R上是单调函数.
其中真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|x+1|-|x+2|>m有解,则实数m的取值范围是(  )
A、(-∞,-1]
B、(-∞,-1)
C、(-∞,1]
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知a2=4,a4=8,则a6=(  )
A、16B、16或-16
C、32D、32或-32

查看答案和解析>>

同步练习册答案