| A. | 2n(n∈Z) | B. | 2n-1(n∈Z) | C. | 4n+1(n∈Z) | D. | 4n-1(n∈Z) |
分析 利用函数的奇偶性和对称性求出函数的周期性,然后求出函数在一个周期内的解析式,和零点,利用函数的周期性进行求解即可.
解答 解:∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
即函数的周期为4,
∵f(x)是定义在R上的奇函数,
∴当-1≤x≤0时,当0≤-x≤1,
则f(-x)=-$\frac{1}{2}$x=-f(x),
则f(x)=$\frac{1}{2}$x,-1≤x≤0,
即f(x)=$\frac{1}{2}$x,-1≤x≤1,
若-3≤x≤-1,则-1≤x+2≤1,
∵f(x+2)=-f(x),
∴f(x)=-f(x+2)=-$\frac{1}{2}$(x+2),-3≤x≤-1,
由g(x)=f(x)+$\frac{1}{2}$=0得f(x)=-$\frac{1}{2}$,
则一个周期[-3,1]内,
若-1≤x≤1,则由f(x)=$\frac{1}{2}$x=$-\frac{1}{2}$得x=-1,
若-3≤x≤-1,则由f(x)=-$\frac{1}{2}$(x+2)=$-\frac{1}{2}$得x=-1,
综上在一个周期内函数的零点为-1,
∵函数的周期是4n,
∴函数的零点为x=4n-1,(n∈Z),
故选:D.
点评 本题主要考查函数零点的求解和判断,根据条件判断函数的周期和函数在一个周期内的零点是解决本题的关键.考查学生的运算和推理能力.
科目:高中数学 来源: 题型:选择题
| A. | (-6-4$\sqrt{2}$,0)∪(0,+∞) | B. | (-6+4$\sqrt{2}$,0)∪(0,+∞) | C. | (-6+4$\sqrt{2}$,0) | D. | (-6-4$\sqrt{2}$,-6+4$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,1) | C. | (1,5) | D. | [1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{1}{2}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向左平移$\frac{1}{2}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,4] | B. | [5,7] | C. | [4,6] | D. | [7,8] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 4 | D. | -4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com