精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,0是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,直线SA和AO所成角的大小是45°.
(Ⅰ)求证:直线SA∥平面BDE;
(Ⅱ)求二面角D-SB-C的余弦值.

分析 (Ⅰ)连接OE,利用正方形的性质与三角形中位线定理可得:OE∥SA.再利用线面平行的判定定理可得:直线SA∥平面BDE;
(II)建立如图所示的空间直角坐标系,由∠SAO=45°.可得D$(0,-2\sqrt{2},0)$,B$(0,2\sqrt{2},0)$,S$(0,0,2\sqrt{2})$,C$(-2\sqrt{2},0,0)$.设平面SBC的法向量$\overrightarrow{n}$=(x,y,1),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SB}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,可得$\overrightarrow{n}$.取平面SBD的法向量为$\overrightarrow{OC}$,利用$cos<\overrightarrow{OC},\overrightarrow{n}>$=$\frac{\overrightarrow{OC}•\overrightarrow{n}}{|\overrightarrow{OC}||\overrightarrow{n}|}$,即可得出.

解答 (Ⅰ)证明:连接OE,
∵四边形ABCD是正方形,∴OC=OA,
又E是侧棱SC的中点,∴OE∥SA.
又SA?平面BDE,OE?平面BDE,
∴直线SA∥平面BDE;
(II)解:建立如图所示的空间直角坐标系,
∵∠SAO=45°.∴D$(0,-2\sqrt{2},0)$,B$(0,2\sqrt{2},0)$,S$(0,0,2\sqrt{2})$,C$(-2\sqrt{2},0,0)$.
$\overrightarrow{OC}$=$(-2\sqrt{2},0,0)$,$\overrightarrow{BC}$=$(-2\sqrt{2},-2\sqrt{2},0)$,$\overrightarrow{SB}$=$(0,2\sqrt{2},-2\sqrt{2})$.
设平面SBC的法向量$\overrightarrow{n}$=(x,y,1),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SB}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2\sqrt{2}y-2\sqrt{2}=0}\\{-2\sqrt{2}x-2\sqrt{2}y=0}\end{array}\right.$,取$\overrightarrow{n}$=(-1,1,1).
取平面SBD的法向量为$\overrightarrow{OC}$=$(-2\sqrt{2},0,0)$.
$cos<\overrightarrow{OC},\overrightarrow{n}>$=$\frac{\overrightarrow{OC}•\overrightarrow{n}}{|\overrightarrow{OC}||\overrightarrow{n}|}$=$\frac{2\sqrt{2}}{\sqrt{3}×2\sqrt{2}}$=$\frac{\sqrt{3}}{3}$.
∴二面角D-SB-C的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查了三角形中位线定理、正方形的性质定理、线面平行的判定定理、向量与数量积的关系、法向量与空间角的求法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.1+(1+x)+(1+x)2+…+(1+x)100的展开式的各项系数之和为(  )
A.199B.2100-1C.2101-1D.2100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{4}$+y2=1
(1)若直线y=kx+2椭圆有两个交点,求出k的取值范围;
(2)经过椭圆左顶点A的直线交椭圆另一点B,线段AB的垂直平分线上的一点P满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,若P点在y轴上,求出P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{1}{2}$,长轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l过点D(4,0)与椭圆C交于A、B两点.
①求△AOB面积的最大值(O为坐标原点)并求取最大值时直线l的方程;
②若E为椭圆C的左顶点,M(1,0),试问∠AMD=∠BME是否一定成立?如果成立请给出证明否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在三棱锥S-ABC中,SA⊥底面ABC,AC⊥BC,若AC=BC=1,SA=AB,则SB与平面SAC所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1.
(1)求证BD1⊥AC;
(2)求直线A1B与平面BB1D1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,PD⊥平面ABCD,AD⊥DC,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=$\frac{1}{2}$BC,E为PC的中点,求证:DE∥平面PAB;
(2)求直线PB与平面PAD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F是抛物线C:y2=2px的焦点,M、N是抛物线C上两个动点,OM,ON的倾斜角分别为θ1、θ2,且θ12=$\frac{π}{3}$,求证:MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在如图所示的空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1D1和A1B1的中点.
(1)求异面直线AE和BF所成角的余弦值;
(2)求平面B1BDD1与平面BFC1所成的锐二面角的余弦值;
(3)若点P在正方形ABCD内部或其边界上,且EP∥平面BFC1,求EP的最大值和最小值.

查看答案和解析>>

同步练习册答案