精英家教网 > 高中数学 > 题目详情
15.已知f(x)=$\frac{x-a}{{{x^2}+1}}$是奇函数,g(x)=x2+bx+1为偶函数.
(1)求a,b的值;
(2)对任意x∈R不等式2f(x)g(x)<g(x)-m恒成立,求m的取值范围.

分析 (1)根据函数奇偶性的定义和性质建立方程关系进行求解即可.
(2)求出函数f(x),g(x)的表达式,将不等式进行化简,利用参数分离法转化为求函数的最值即可得到结论.

解答 解:(1)∵$f(x)=\frac{x-a}{{{x^2}+1}}$是奇函数,且函数的定义域为R,
∴f(0)=0,即f(0)=-a=0,
∴a=0
又g(x)=x2+bx+1是偶函数,
∴g(-x)=g(x),
即x2-bx+1=x2+bx+1,
则-b=b,∴b=0.
则a=0,b=0.
(2)由(1)知$f(x)=\frac{x}{{{x^2}+1}},g(x)={x^2}+1$.
由2f(x)g(x)<g(x)-m
得$\frac{2x}{{x}^{2}+1}$•(x2+1)<x2+1-m,
即2x<x2+1-m,
则m<x2-2x+1对任意x∈R恒成立,
又x2-2x+1=(x-1)2≥0.
∴m<0.

点评 本题主要考查不等式恒成立问题,利用函数奇偶性的性质求出a,b的值,以及函数f(x)和g(x)的表达式,利用参数分离法进行求函数的最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{m}{x}$+lnx+x,g(x)=x3-3x.
(I)若m=2,求f(x)的极值;
(Ⅱ)若对于任意的s∈[$\frac{1}{2}$,2],存在t∈[$\frac{1}{2}$,2]有f(s)≤g(t),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,若S3=6,a1=4,则S5等于(  )
A.-2B.0C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过三点A(1,2),B(3,-2),C(11,2)的圆交x轴于M,N两点,则|MN|=(  )
A.$3\sqrt{6}$B.$4\sqrt{6}$C.$\sqrt{21}$D.$2\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{5}{i-2}$等于(  )
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆的方程为$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{16}$=1,则椭圆的长轴长为(  )
A.4B.5C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆台的上、下底面半径分别是1、2,且侧面面积等于两底面积之和,则圆台的体积等于$\frac{28π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足$\frac{{x}^{2}}{4}$+y2=1,则x+2y的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设p:函数f(x)=lg(x2-4x+a2)的定义域为R;q:a2-5a-6≥0.如果“p∨q”为真,且“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

同步练习册答案