分析 (Ⅰ)将m=2代入函数f(x)的表达式,求出f(x)的导数,得到函数的单调区间,从而求出函数的极值即可;
(Ⅱ)对于任意的s∈[$\frac{1}{2}$,2],存在t∈[$\frac{1}{2}$,2]有f(s)≤g(t),?g(t)max≥f(s)max.求出f(s)在s∈[$\frac{1}{2}$,2]上的最大值,利用导数可得g(t)max=g(2),解出即可.
解答 解:(Ⅰ)m=2时,f(x)=$\frac{2}{x}$+lnx+x,f′(x)=$\frac{(x+2)(x-1)}{{x}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增,
∴f(x)极小值=f(1)=3;
(Ⅱ)对于任意的s∈[$\frac{1}{2}$,2],存在t∈[$\frac{1}{2}$,2]有f(s)≤g(t),?g(t)max≥f(s)max.
由(Ⅰ)得:f(s)在[$\frac{1}{2}$,1)递减,在(1,2]递增,
而f($\frac{1}{2}$)=2m+ln$\frac{1}{2}$+$\frac{1}{2}$,f(2)=$\frac{m}{2}$+ln2+2,
f($\frac{1}{2}$)-f(2)=$\frac{3}{2}$m-2ln2-$\frac{3}{2}$,
令f($\frac{1}{2}$)-f(2)=0,解得:m=$\frac{4}{3}$ln2+1,
∴m>$\frac{4}{3}$ln2+1时,f($\frac{1}{2}$)>f(2),
m<$\frac{4}{3}$ln2+1时,f($\frac{1}{2}$)<f(2),
f(s)max={f($\frac{1}{2}$)或f(2)},
g(t)=t3-3t,g′(t)=3t2-3,
令g′(t)>0,解得:t>1,令g′(t)<0,解得:t<1,
∴g(t)在[$\frac{1}{2}$,1)递减,在(1,2]递增,
而g($\frac{1}{2}$)=-1,g(2)=2,∴g(t)在[$\frac{1}{2}$,2]的最大值是2,
∴m>$\frac{4}{3}$ln2+1时,2>2m+ln$\frac{1}{2}$+$\frac{1}{2}$,解得:m<$\frac{3}{4}$+$\frac{1}{2}$ln2,
m<$\frac{4}{3}$ln2+1时,2>$\frac{m}{2}$+ln2+2,解得:m<-2ln2,
经检验,m=-2ln2符合题意,
综上,m∈(-∞,-2ln2]∪($\frac{4}{3}$ln2+1,$\frac{3}{4}$+$\frac{1}{2}$ln2).
点评 本题考查了函数的单调性、极值问题,考查导数的应用,转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 次品数 | 0 | 1 | 2 | 3 | 5 |
| 频率 | 0.5 | 0.2 | 0.05 | 0.2 | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com