分析 (Ⅰ)由于角α的终边过点(3,4),可得 x=3,y=4,r=5,即可求出sinα,cosα的值;
(Ⅱ)先化简,再代入计算求$\frac{{2cos({\frac{π}{2}-α})-cos({π+α})}}{{2sin({π-α})}}$的值.
解答 解:(Ⅰ)∵角α的终边过点(3,4),∴x=3,y=4,r=5,∴sinα=$\frac{4}{5}$,
∵cosα=$\frac{3}{5}$;
(Ⅱ)$\frac{{2cos({\frac{π}{2}-α})-cos({π+α})}}{{2sin({π-α})}}$=$\frac{2sinα+cosα}{2sinα}$=$\frac{11}{8}$.
点评 本题考查任意角的三角函数的定义,考查诱导公式的运用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $-\frac{{2\sqrt{3}}}{3}$ | D. | $±\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,$x_{\;}^2-1≤0$ | B. | ?x∈R,$x_{\;}^2-1≤0$ | C. | ?x∈R,$x_{\;}^2-1<0$ | D. | ?x∈R,$x_{\;}^2-1<0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com