精英家教网 > 高中数学 > 题目详情
12.已知随机变量ξ服从二项分布$ξ\~B(6,\frac{1}{2})$,则P(ξ=2)的值为$\frac{15}{64}$.

分析 代入二项分布的概率公式计算.

解答 解:P(ξ=2)=${C}_{6}^{2}$•($\frac{1}{2}$)2(1-$\frac{1}{2}$)4=$\frac{15}{64}$.
故答案为:$\frac{15}{64}$.

点评 本题考查了二项分布的概率计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设{an}为公比q>1的等比数列,若a2014和a2015是方程4x2-8x+3=0的两根,则a2016+a2017=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,an+1=4an+3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x=m和x=n是函数f(x)=lnx+$\frac{1}{2}$x2-(a+2)x的两个极值点,其中m<n,a∈R.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程
(Ⅱ) 求f(m)+f(n)的取值范围;
(Ⅲ)若a>$\sqrt{e}$+$\frac{1}{\sqrt{e}}$-2,求f(n)-f(m)的最大值(e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如图:
分组频数频率
[10,15)100.25
[15,20)25a
[20,25)mp
[25,30)20.05
合计M1
(1)求出表中M、p及图中a的值;
(2)若该校高一学生有720人,试估计他们参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sin(π+α)=$\frac{3}{5}$且α是第三象限的角,则cos(α-2π)的值是(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4..在某次电影展映活动中,展映的影片类型有科幻片和文艺片两种.统计数据显示,100名男性观众中选择科幻片的有60名,60名女性观众中选择文艺片的有40名.
(Ⅰ)根据已知条件完成2×2列联表:
科幻片文艺片合计
合计
(Ⅱ)判断能否在犯错误的概率不超过0.01的情况下认为“观影类型与性别有关”?
随机变量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
临界值表
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设{an}是等差数列,若a2=3,a9=7,则数列{an}前10项和为(  )
A.25B.50C.100D.200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$C:{x^2}-\frac{y^2}{b^2}=1({b>0})$的一条渐近线的倾斜角为$\frac{π}{3}$,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案