精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点( ).

【答案】(Ⅰ)解:由△MOF是等腰直角三角形,得c2=b2=4,a2=8,

故椭圆方程为: =1.

(Ⅱ)证明:(i)若直线AB的斜率存在,设AB的方程为:y=kx+m,依题意得m≠±2,

设A(x1,y1),B(x2,y2),

,得(1+2k2)x2+4kmx+2m2﹣8=0,

由已知 k1+k2=8,可得

所以 ,即

所以 ,整理得

故直线AB的方程为 ,即y=k( )﹣2.

所以直线AB过定点( ).

(ii)若直线AB的斜率不存在,设AB方程为x=x0

设A(x0,y0),B(x0,﹣y0),

由已知 ,得

此时AB方程为 ,显然过点( ).

综上,直线AB过定点( ).


【解析】(Ⅰ)由△MOF是等腰直角三角形,得c2=b2=4,再根据a2=b2+c2可求得a;(Ⅱ)分情况讨论:(1)当直线AB的斜率存在时,设AB的方程为:y=kx+m,联立直线AB方程与椭圆方程消掉y得x的二次方程,由韦达定理及k1+k2=8可得关于k,m的关系式,消m代入直线AB方程可求得定点坐标;(2)若直线AB的斜率不存在,设AB方程为x=x0,由已知可求得AB方程,易验证其过定点;
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移m(m>0)个单位长度,得到的函数y=f(x)在区间 上单调递减,则m的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知圆C: (θ为参数),点P在直线l:x+y﹣4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
(I)求圆C和直线l的极坐标方程;
(II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR||OQ|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥A﹣BCD的两条棱AB=CD=6,其余各棱长均为5,求三棱锥的内切球半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从A地到B地共有两条路径L1和L2 , 据统计,经过两条路径所用的时间互不影响,且经过L1与L2所用时间落在各时间段内的频率分布直方图分别如图(1)和图(2).
现甲、乙两人分别有40分钟和50分钟时间用于从A地到B地.
(1)为了尽最大可能在各自允许的时间内赶到B地,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到B地的人数,针对(1)的选择方案,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=2py(p>0)的焦点为F,A为C上异于原点的任意一点,点A到x轴的距离等于|AF|﹣1.

(1)求抛物线C的方程;
(2)直线AF与C交于另一点B,抛物线C分别在点A,B处的切线交于点P,D为y轴正半轴上一点,直线AD与C交于另一点E,且有|FA|=|FD|,N是线段AE的靠近点A的四等分点.
(i)证明点P在△NAB的外接圆上;
(ii)△NAB的外接圆周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 .
(1)求曲线 的参数方程;
(2)在曲线 上任取一点 ,求的 最大值.

查看答案和解析>>

同步练习册答案