【题目】已知椭圆
的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点(
).
【答案】(Ⅰ)解:由△MOF是等腰直角三角形,得c2=b2=4,a2=8,
故椭圆方程为:
=1.
(Ⅱ)证明:(i)若直线AB的斜率存在,设AB的方程为:y=kx+m,依题意得m≠±2,
设A(x1,y1),B(x2,y2),
由
,得(1+2k2)x2+4kmx+2m2﹣8=0,
则
.
由已知 k1+k2=8,可得
,
所以
,即
.
所以
,整理得
.
故直线AB的方程为
,即y=k(
)﹣2.
所以直线AB过定点(
).
(ii)若直线AB的斜率不存在,设AB方程为x=x0,
设A(x0,y0),B(x0,﹣y0),
由已知
,得
.
此时AB方程为
,显然过点(
).
综上,直线AB过定点(
).
【解析】(Ⅰ)由△MOF是等腰直角三角形,得c2=b2=4,再根据a2=b2+c2可求得a;(Ⅱ)分情况讨论:(1)当直线AB的斜率存在时,设AB的方程为:y=kx+m,联立直线AB方程与椭圆方程消掉y得x的二次方程,由韦达定理及k1+k2=8可得关于k,m的关系式,消m代入直线AB方程可求得定点坐标;(2)若直线AB的斜率不存在,设AB方程为x=x0,由已知可求得AB方程,易验证其过定点;
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:
,焦点在y轴:
才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,圆C的参数方程
(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+
)=3
,射线OM:θ=
与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知圆C:
(θ为参数),点P在直线l:x+y﹣4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
(I)求圆C和直线l的极坐标方程;
(II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR||OQ|,求Q点轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知从A地到B地共有两条路径L1和L2 , 据统计,经过两条路径所用的时间互不影响,且经过L1与L2所用时间落在各时间段内的频率分布直方图分别如图(1)和图(2). ![]()
现甲、乙两人分别有40分钟和50分钟时间用于从A地到B地.
(1)为了尽最大可能在各自允许的时间内赶到B地,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到B地的人数,针对(1)的选择方案,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0)的焦点为F,A为C上异于原点的任意一点,点A到x轴的距离等于|AF|﹣1.![]()
(1)求抛物线C的方程;
(2)直线AF与C交于另一点B,抛物线C分别在点A,B处的切线交于点P,D为y轴正半轴上一点,直线AD与C交于另一点E,且有|FA|=|FD|,N是线段AE的靠近点A的四等分点.
(i)证明点P在△NAB的外接圆上;
(ii)△NAB的外接圆周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
.
(1)求曲线
的参数方程;
(2)在曲线
上任取一点
,求的
最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com