精英家教网 > 高中数学 > 题目详情
19.如图所示的是一多面体的三视图(尺寸如图所示,单位:cm),则它的表面积是(  )
A.(6+3$\sqrt{3}$)cm2B.(12+3$\sqrt{3}$)cm2C.15cm2D.9cm2

分析 画出几何体的直观图,然后结合三视图的数据求出几何体的表面积即可.

解答 解:由题意可知几何体是正方体的一部分,如图:
几何体的表面积是3个正方形的面积与一个正六边形的面积,
可得表面积为:3×4+6×$\frac{\sqrt{3}}{4}×{(\sqrt{2})}^{2}$=12+3$\sqrt{3}$.cm2
故选:B.

点评 本题考查直观图与三视图的关系,画出几何体的直观图是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角θ最大时采集效果最好,则采集效果最好时位置C到AB的距离是(  )
A.2$\sqrt{2}$mB.2$\sqrt{3}$mC.4 mD.6 m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为,F1和F2,上顶点为B,BF2,延长线交椭圆于点A,△ABF的周长为8,且$\overrightarrow{B{F_1}}•\overrightarrow{BA}$=0.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点P(1,0)的直线l与椭圆C相交于M,N两点,点T(4,3),记直线TM,TN的斜率分别为k1,k2,当k1k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知△ABC的三条高是AD,BE,CF,用向量方法证明:AD,BE,CF相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上的函数f(x)满足:对?x∈(0,+∞),都有f(2x)=2f(x);当x∈(1,2]时,f(x)=2-x,给出如下结论:①对?m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);      
③存在n∈Z,使得f(2n+1)=9;
④函数f(x)在区间(a,b)单调递减的充分条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1),
其中所有正确结论的序号是:①②④.(请将所有正确命题的序号填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正四棱台ABCD-A1B1C1D1中,A1B1=a,AB=2a,AA1=$\sqrt{2}a$,E,F分别是AD,AB的中点.
(1)求证:平面EFB1D1∥平面BDC1
(2)求证:A1C⊥平面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$+(k-1)x-k+$\frac{3}{2}$,g(x)=xlnx.
(Ⅰ)若函数g(x)的图象在(1,0)处的切线l与函数f(x)的图象相切,求实数k的值;
(Ⅱ)当k=0时,证明:f(x)+g(x)>0;
(Ⅲ)设h(x)=f(x)+g′(x),若h(x)有两个极值点x1,x2(x1≠x2),且h(x1)+h(x2)<$\frac{7}{2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.化简(1+2${\;}^{-\frac{1}{16}}$)(1+2${\;}^{-\frac{1}{8}}$)(1+2${\;}^{-\frac{1}{4}}$)(1+2${\;}^{-\frac{1}{2}}$)得到的结果是(  )
A.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)-1B.(1-2${\;}^{-\frac{1}{16}}$)-1C.1-2${\;}^{-\frac{1}{16}}$D.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1、F2.其中F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF1|=2a-$\frac{5}{3}$.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)若过点D(4,0)的直线l与C1交于不同的两点A、B,且A在DB之间,试求△AOD与BOD面积之比的取值范围.

查看答案和解析>>

同步练习册答案