精英家教网 > 高中数学 > 题目详情
11.已知z=1-i(i是虚数单位),$\frac{i}{\overline{z}}$表示的点落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由已知z,求出$\overline{z}$,然后代入$\frac{i}{\overline{z}}$,再利用复数代数形式的乘除运算化简去,求出$\frac{i}{\overline{z}}$表示的点的坐标,则答案可求.

解答 解:∵z=1-i,
∴$\overline{z}=1+i$.
则$\frac{i}{\overline{z}}$=$\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
∴$\frac{i}{\overline{z}}$表示的点的坐标为:($\frac{1}{2}$,$\frac{1}{2}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当$x∈[0,\frac{π}{2})$时,f(x)=sinx,则$f(\frac{8}{3}π)$的值为(  )
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的左,右焦点坐标分别为(-2,0),(2,0),离心率为$\frac{\sqrt{2}}{2}$,若P为椭圆C上的一点,过点P垂直于y轴的直线交y轴于点Q,M为线段QP的中点.点(1,$\frac{3}{2}$)在椭圆C上.
(1)求椭圆C短轴长;
(2)求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个正三棱柱的主视图如图所示,则其左视图的面积(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在xOy平面上,将抛物线弧y=1-x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0,y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1-y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设x,y均为非零实数,且满足$\frac{xsin\frac{π}{5}+ycos\frac{π}{5}}{xcos\frac{π}{5}-ysin\frac{π}{5}}$=tan$\frac{9π}{20}$.
(1)求$\frac{y}{x}$的值;
(2)在△ABC中,若tanC=$\frac{y}{x}$,求sin2A+2cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+x2
(1)求函数h(x)=f(x)-3x的极值;
(2)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围;
(3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且x0=$\frac{m+n}{2}$,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的焦点与双曲线$\frac{y^2}{3}$-x2=1的顶点重合,椭圆C的长轴长为4.
(1)求双曲线的实轴,虚轴长及渐近线方程.
(2)求椭圆C的标准方程;
(3)若已知直线y=x+m.当m为何值时,直线与椭圆C有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.圆x2+y2-4x=0在点P(2,2)处的切线方程为y-2=0.

查看答案和解析>>

同步练习册答案