精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=(  )
A.(-2,0)B.(0,2)C.(-1,2)D.(-2,-1)

分析 求解对数型函数的定义域化简集合A,然后直接利用交集运算求解.

解答 解:由x+1>0,得x>-1
∴A=(-1,+∞),
B={x||x|<2}=(-2,2)
∴A∩B=(-1,2).
故选:C

点评 本题考查了交集及其运算,考查了对数函数的定义域,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是
30.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|(x+1)(4-x)>0},B={x|0<x<9},则A∩B等于(  )
A.(0,4)B.(4,9)C.(-1,4)D.(-1,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-2|-4,g(x)=|x+1|-3.
(Ⅰ)若f(x)≤1,求实数x的取值范围;
(Ⅱ)若不等式f(x)-g(x)≥m-1有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=m-|x-3|,若不等式f(x)>2的解集为(2,4),则实数m的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线经过点$({1,2\sqrt{2}})$,其一条渐近线方程为y=2x,则该双曲线的标准方程为$\frac{{y}^{2}}{4}$-x2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{4},1),\overrightarrow n=(cos\frac{x}{4},cos_{\;}^2\frac{x}{4}).记f(x)=\overrightarrow m•\overrightarrow n$.
(1)若f(α)=$\frac{3}{2},求cos(\frac{2π}{3}-α)$的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cos B=bcos C,若f(A)=$\frac{{1+\sqrt{3}}}{2}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴长为4,焦距为$2\sqrt{3}$,以A为圆心的圆(x-2)2+y2=r2(r>0)与椭圆相交于B、C两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求$\overrightarrow{AB}•\overrightarrow{AC}$的取值范围;
(Ⅲ)设P是椭圆C长异于B、C的任一点,直线PB、PC与x轴分别交于M、N,
求S△POM•S△PON的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某人欲投资A,B两支股票时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,根据预测,A,B两支股票可能的最大盈利率分别为40%和80%,可能的最大亏损率分别为10%和30%.若投资金额不超过15万元.根据投资意向,A股的投资额不大于B股投资额的3倍,且确保可能的资金亏损不超过2.7万元,设该人分别用x万元,y万元投资A,B两支股票.
(Ⅰ)用x,y列出满足投资条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问该人对A,B两支股票各投资多少万元,才能使可能的盈利最大?并求出此最大利润.

查看答案和解析>>

同步练习册答案