·ÖÎö £¨¢ñ£©ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤£¬½¹¾à£¬¼°a2=b2+c2£¬ÇóµÃa¡¢b¼´¿É£®
£¨¢ò£©ÉèB£¨x0£¬y0£©ÔòC£¨x0£¬-y0£©£¬¿ÉµÃ$\overrightarrow{AB}•\overrightarrow{AC}={£¨{x_0}-2£©^2}-y_0^2$=${£¨{x_0}-2£©^2}-£¨1-\frac{x_0^2}{4}£©$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{£¨{x_0}-\frac{8}{5}£©^2}-\frac{1}{5}$£¬ÓÉ-2£¼x0£¼2£¬ÇóµÃ$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§£®
£¨¢ó£©ÉèP£¨x1£¬y1£©£¨y1¡Ù¡Ày0£©£¬µÃµ½Ö±ÏßPB£¬PCµÄ·½³Ì£¬·Ö±ðÁîy=0µÃ${x_M}=\frac{{{x_1}{y_0}-{x_0}{y_1}}}{{{y_0}-{y_1}}}$£¬${x_N}=\frac{{{x_1}{y_0}+{x_0}{y_1}}}{{{y_0}+{y_1}}}$£¬µÃ${S_{¡÷POM}}•{S_{¡÷PON}}=\frac{1}{4}|OM||ON|•y_1^2$=$\frac{1}{4}|{x_M}{x_N}|•y_1^2=y_1^2$£¬
ÒÀ¾Ý-1¡Üy1¡Ü1£¬ÇóµÃS¡÷POM•S¡÷PONÈ¡µÃ×î´óÖµ£®
½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ$2\sqrt{3}$£¬¡à2a=4£¬2c=2$\sqrt{3}$£¬
¡àa=2£¬b2=a2-c2=1
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®
£¨¢ò£©ÉèB£¨x0£¬y0£©ÔòC£¨x0£¬-y0£©ÇÒ$\frac{x_0^2}{4}+y_0^2=1$£¬
¡à$\overrightarrow{AB}•\overrightarrow{AC}={£¨{x_0}-2£©^2}-y_0^2$=${£¨{x_0}-2£©^2}-£¨1-\frac{x_0^2}{4}£©$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{£¨{x_0}-\frac{8}{5}£©^2}-\frac{1}{5}$£¬
ÒòΪ-2£¼x0£¼2£¬ËùÒÔ$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§Îª$[-\frac{1}{5}£¬16£©$£®
£¨¢ó£©ÉèP£¨x1£¬y1£©£¨y1¡Ù¡Ày0£©£¬Ôò$\frac{x_1^2}{4}+y_1^2=1$£¬
Ö±ÏßPB£¬PCµÄ·½³Ì·Ö±ðΪ£º$PB£ºy-{y_1}=\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}£¨x-{x_1}£©$£¬$PC£ºy-{y_1}=\frac{{-{y_0}-{y_1}}}{{{x_0}-{x_1}}}£¨x-{x_1}£©$£¬
·Ö±ðÁîy=0µÃ${x_M}=\frac{{{x_1}{y_0}-{x_0}{y_1}}}{{{y_0}-{y_1}}}$£¬${x_N}=\frac{{{x_1}{y_0}+{x_0}{y_1}}}{{{y_0}+{y_1}}}$£¬
ËùÒÔ${x_M}{x_N}=\frac{x_1^2y_0^2-x_0^2y_1^2}{y_0^2-y_1^2}$=$\frac{£¨4-4y_1^2£©y_0^2-£¨4-4y_0^2£©y_1^2}{y_0^2-y_1^2}$=$\frac{4£¨y_0^2-y_1^2£©}{y_0^2-y_1^2}=4$£¬
ÓÚÊÇ${S_{¡÷POM}}•{S_{¡÷PON}}=\frac{1}{4}|OM||ON|•y_1^2$=$\frac{1}{4}|{x_M}{x_N}|•y_1^2=y_1^2$£¬
ÒòΪ-1¡Üy1¡Ü1£¬ËùÒÔS¡÷POM•S¡÷PONÈ¡µÃ×î´óֵΪ1£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ý£¬Ãæ»ýµÄ·¶Î§£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬0£© | B£® | £¨0£¬$\frac{1}{2e}$£© | C£® | £¨-¡Þ£¬0£©¡È£¨$\frac{1}{2e}$£¬+¡Þ£© | D£® | £¨$\frac{1}{2e}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-2£¬0£© | B£® | £¨0£¬2£© | C£® | £¨-1£¬2£© | D£® | £¨-2£¬-1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {2} | B£® | {3} | C£® | {5£¬6} | D£® | {3£¬5£¬6} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{9}{2}d{m^3}$ | B£® | 4dm3 | C£® | $\frac{7}{2}d{m^3}$ | D£® | 3dm3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com