10£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ$2\sqrt{3}$£¬ÒÔAΪԲÐĵÄÔ²£¨x-2£©2+y2=r2£¨r£¾0£©ÓëÍÖÔ²ÏཻÓÚB¡¢CÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©Çó$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§£»
£¨¢ó£©ÉèPÊÇÍÖÔ²C³¤ÒìÓÚB¡¢CµÄÈÎÒ»µã£¬Ö±ÏßPB¡¢PCÓëxÖá·Ö±ð½»ÓÚM¡¢N£¬
ÇóS¡÷POM•S¡÷PONµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤£¬½¹¾à£¬¼°a2=b2+c2£¬ÇóµÃa¡¢b¼´¿É£®
£¨¢ò£©ÉèB£¨x0£¬y0£©ÔòC£¨x0£¬-y0£©£¬¿ÉµÃ$\overrightarrow{AB}•\overrightarrow{AC}={£¨{x_0}-2£©^2}-y_0^2$=${£¨{x_0}-2£©^2}-£¨1-\frac{x_0^2}{4}£©$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{£¨{x_0}-\frac{8}{5}£©^2}-\frac{1}{5}$£¬ÓÉ-2£¼x0£¼2£¬ÇóµÃ$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§£®
£¨¢ó£©ÉèP£¨x1£¬y1£©£¨y1¡Ù¡Ày0£©£¬µÃµ½Ö±ÏßPB£¬PCµÄ·½³Ì£¬·Ö±ðÁîy=0µÃ${x_M}=\frac{{{x_1}{y_0}-{x_0}{y_1}}}{{{y_0}-{y_1}}}$£¬${x_N}=\frac{{{x_1}{y_0}+{x_0}{y_1}}}{{{y_0}+{y_1}}}$£¬µÃ${S_{¡÷POM}}•{S_{¡÷PON}}=\frac{1}{4}|OM||ON|•y_1^2$=$\frac{1}{4}|{x_M}{x_N}|•y_1^2=y_1^2$£¬
ÒÀ¾Ý-1¡Üy1¡Ü1£¬ÇóµÃS¡÷POM•S¡÷PONÈ¡µÃ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ$2\sqrt{3}$£¬¡à2a=4£¬2c=2$\sqrt{3}$£¬
¡àa=2£¬b2=a2-c2=1
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®
£¨¢ò£©ÉèB£¨x0£¬y0£©ÔòC£¨x0£¬-y0£©ÇÒ$\frac{x_0^2}{4}+y_0^2=1$£¬
¡à$\overrightarrow{AB}•\overrightarrow{AC}={£¨{x_0}-2£©^2}-y_0^2$=${£¨{x_0}-2£©^2}-£¨1-\frac{x_0^2}{4}£©$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{£¨{x_0}-\frac{8}{5}£©^2}-\frac{1}{5}$£¬
ÒòΪ-2£¼x0£¼2£¬ËùÒÔ$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§Îª$[-\frac{1}{5}£¬16£©$£®
£¨¢ó£©ÉèP£¨x1£¬y1£©£¨y1¡Ù¡Ày0£©£¬Ôò$\frac{x_1^2}{4}+y_1^2=1$£¬
Ö±ÏßPB£¬PCµÄ·½³Ì·Ö±ðΪ£º$PB£ºy-{y_1}=\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}£¨x-{x_1}£©$£¬$PC£ºy-{y_1}=\frac{{-{y_0}-{y_1}}}{{{x_0}-{x_1}}}£¨x-{x_1}£©$£¬
·Ö±ðÁîy=0µÃ${x_M}=\frac{{{x_1}{y_0}-{x_0}{y_1}}}{{{y_0}-{y_1}}}$£¬${x_N}=\frac{{{x_1}{y_0}+{x_0}{y_1}}}{{{y_0}+{y_1}}}$£¬
ËùÒÔ${x_M}{x_N}=\frac{x_1^2y_0^2-x_0^2y_1^2}{y_0^2-y_1^2}$=$\frac{£¨4-4y_1^2£©y_0^2-£¨4-4y_0^2£©y_1^2}{y_0^2-y_1^2}$=$\frac{4£¨y_0^2-y_1^2£©}{y_0^2-y_1^2}=4$£¬
ÓÚÊÇ${S_{¡÷POM}}•{S_{¡÷PON}}=\frac{1}{4}|OM||ON|•y_1^2$=$\frac{1}{4}|{x_M}{x_N}|•y_1^2=y_1^2$£¬
ÒòΪ-1¡Üy1¡Ü1£¬ËùÒÔS¡÷POM•S¡÷PONÈ¡µÃ×î´óֵΪ1£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ý£¬Ãæ»ýµÄ·¶Î§£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô´æÔÚÕýʵÊým£¬Ê¹µÃ¹ØÓÚxµÄ·½³Ìx+a£¨2x+2m-4ex£©[1n£¨x+m£©-lnx]=0ÓÐÁ½¸ö²»Í¬µÄ¸ù£¬ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0£©B£®£¨0£¬$\frac{1}{2e}$£©C£®£¨-¡Þ£¬0£©¡È£¨$\frac{1}{2e}$£¬+¡Þ£©D£®£¨$\frac{1}{2e}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª¼¯ºÏA={x|y=lg£¨x+1£©}£¬B={x||x|£¼2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨-2£¬0£©B£®£¨0£¬2£©C£®£¨-1£¬2£©D£®£¨-2£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏU={1£¬2£¬3£¬4£¬5£¬6}£¬¼¯ºÏA={2£¬3}£¬¼¯ºÏB={1£¬2£¬4}£¬Ôò£¨∁UB£©¡ÉA=£¨¡¡¡¡£©
A£®{2}B£®{3}C£®{5£¬6}D£®{3£¬5£¬6}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ÓÐÒ»¸öµ×ÃæÊÇÕý·½ÐεÄÖ±ÀâÖùÐÍÈÝÆ÷£¨Î޸ǣ©£¬µ×ÃæÀⳤΪ1dm£¨dmΪ·ÖÃ×£©£¬¸ßΪ5dm£¬Á½¸öС¿×ÔÚÆäÏà¶ÔµÄÁ½Ìõ²àÀâÉÏ£¬ÇÒµ½Ïµ×Ãæ¾àÀë·Ö±ðΪ3dmºÍ4dm£¬Ôò£¨Ë®²»Íâ©Çé¿öÏ£©´ËÈÝÆ÷¿É×°µÄË®×î¶àΪ£¨¡¡¡¡£©
A£®$\frac{9}{2}d{m^3}$B£®4dm3C£®$\frac{7}{2}d{m^3}$D£®3dm3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PD¡Íµ×ÃæABCD£¬µ×ÃæABCDΪÕý·½ÐΣ¬PD=DC=2£¬G£¬F·Ö±ðÊÇAD£¬PBµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºCD¡ÍPA£»
£¨¢ò£©Ö¤Ã÷£ºGF¡ÍÆ½ÃæPBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôsin¦Á£¾0£¬cos¦Á£¼0£¬Ôò½Ç¦ÁÔÚµÚ¶þÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÃݺ¯Êýy=xaµÄͼÏó¹ýµã£¨3£¬9£©£¬Ôò${£¨\frac{a}{x}-\sqrt{x}£©}^{8}$µÄÕ¹¿ªÊ½ÖÐxµÄϵÊýΪ112£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ1£¬¾ØÐÎABCDÖУ¬AB=1£¬AD=2£¬µãEΪADÖÐµã£¬ÑØBE½«¡÷ABEÕÛÆðÖÁ¡÷PBE£¬Èçͼ2Ëùʾ£¬µãPÔÚÃæBCDEµÄÉäÓ°OÂäÔÚBEÉÏ£®

£¨¢ñ£©ÇóÖ¤£ºBP¡ÍCE£»
£¨¢ò£©Çó¶þÃæ½ÇB-PC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸