| A. | (-∞,0) | B. | (0,$\frac{1}{2e}$) | C. | (-∞,0)∪($\frac{1}{2e}$,+∞) | D. | ($\frac{1}{2e}$,+∞) |
分析 由题意得-$\frac{1}{2a}$=(1+$\frac{m}{x}$-2e)ln(1+$\frac{m}{x}$)=(t-2e)lnt,(t=$\frac{m}{x}$+1>1),令f(t)=(t-2e)lnt,(t>0),利用导数性质能求出实数a的取值范围.
解答 解:由题意得-$\frac{1}{2a}$=(1+$\frac{m}{x}$-2e)ln(1+$\frac{m}{x}$)=(t-2e)lnt,(t=$\frac{m}{x}$+1>1),
令f(t)=(t-2e)lnt,(t>0),
则f′(t)=lnt+1-$\frac{2e}{t}$,f''(t)=$\frac{1}{t}$+$\frac{2e}{{t}^{2}}$>0,
当x>e时,f′(t)>f′(e)=0,
当0<x<e时,f′(t)<f′(e)=0,
∴f(t)≥f(e)=-e,
∴-$\frac{1}{2a}$>-e,
解得a<0或a>$\frac{1}{2e}$,
故选:C.
点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质、构造法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈[-2,+∞),x0+3<1 | B. | ?x0∈[-2,+∞),x0+3≥1 | ||
| C. | ?0∈[-2,+∞),x0+3<1 | D. | ?x0∈(-∞,-2),x0+3≥1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{π}{6},\frac{π}{2}]$ | B. | $[\frac{π}{4},\frac{π}{3}]$ | C. | $[\frac{π}{3},\frac{π}{2}]$ | D. | $[\frac{π}{6},\frac{π}{4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | (4,9) | C. | (-1,4) | D. | (-1,9) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com