【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知cosA=
,b=5c.
(1)求sinC;
(2)若△ABC的面积S=
sinBsinC,求a的值.
【答案】
(1)解:在△ABC中,∵a2=b2+c2﹣2bccosA=26c2﹣10c2×
=18c2,
∴a=3
c,
∵cosA=
,
∵,0<A<π,
∴sinA=
,
∵
=
,
∴sinC=
=
= ![]()
(2)解:∵b=5c,
∴
=
=5,
∴sinB=5sinC,
∴S=
sinBsiS=nC=
sin2C=
,
∵S=
bcsinA=
c2=
,
∴
=
,
∴a= ![]()
【解析】(1)利用余弦定理可求的a=3,进而根据cosA求得sinA,利用正弦定理即可求得sinC.(2)根据b和c的关系,进而求得sinB和sinC的关系,把sinC代入面积公式求得三角形的面积,进而利用三角形面积公式求得 bcsinA=S,求得a
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
底面
,底面
是直角梯形,
,
,
,
,点
在
上,且
.
![]()
(Ⅰ)已知点
在
上,且
,求证:平面
平面
;
(Ⅱ)当二面角
的余弦值为多少时,直线
与平面
所成的角为
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=1,an+an+1=(
)n , Sn=a1+4a2+42a3+…+4n﹣1an , 类比课本中推导等比数列前项和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数
小于
表示空气质量优良,空气质量指数大于
表示空气重度污染.
![]()
(1)若该人随机选择3月1日至3月14日中的某一天到达该市,到达后停留
天(到达当日算
天),求此人停留期间空气重度污染的天数为
天的概率;
(2)若该人随机选择3月7日至3月12日中的
天到达该市,求这
天中空气质量恰有
天是重度污染的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=
,cosC=
![]()
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=3sin(2x+
)的图象为C,关于函数f(x)及其图象的判断如下: ①图象C关于点(
,0)对称;
②图象C关于直线x=
对称;
③由图象C向右平移
个单位长度可以得到y=3sin2x的图象;
④函数f(x)在区间(﹣
,
)内是减函数;
⑤函数|f(x)+1|的最小正周期为
.
其中正确的结论序号是 . (把你认为正确的结论序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
经过不同的三点
在第三象限),线段
的中点在直线
上.
![]()
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设点
是椭圆
上的动点(异于点
且直线
分别交直线
于
两点,问
是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体
中,
在线段
上运动且不与
,
重合,给出下列结论:
①
;
②
平面
;
③二面角
的大小随
点的运动而变化;
④三棱锥
在平面
上的投影的面积与在平面
上的投影的面积之比随
点的运动而变化;
其中正确的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com