精英家教网 > 高中数学 > 题目详情

已知函数的定义域为R,对任意,均有
,且对任意都有
(1)试证明:函数在R上是单调函数;
(2)判断的奇偶性,并证明。
(3)解不等式
(4)试求函数上的值域;

(1)证明略
(2)奇函数,证明略
(3)
(4)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(满分12分)求函数的单调区间及极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)已知函数
(1)判断函数的奇偶性;
(2)若在区间是增函数,求实数的       取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)判断的奇偶性并证明;
(2)若的定义域为[](),判断在定义域上的增减性,并加以证明;
(3)若,使的值域为[]的定义域区间[]()是否存在?若存在,求出[],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知定义域为R的函数是奇函数.
(I)求a的值,并指出函数的单调性(不必说明单调性理由);
(II)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数f(x)是以2为周期的偶函数 ,且当x∈(0 ,1)时 ,
f(x) = -1 .(1)求x∈(-1 ,1)时 f(x)的解析式 ;(2)求f()的值 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设,其中,且为自然对数的底)
(1)求的关系;
(2)在其定义域内的单调函数,求的取值范围;
(3)求证:(i) 
(ii) ()。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在(-1,1)上的奇函数,且
(1)试求出函数的解析式;
(2)证明函数在定义域内是单调增函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数 
(1)画出函数的图象;
(2)利用图象回答:当为何值时,方程有一个解?有两个解?有三个解?

查看答案和解析>>

同步练习册答案