精英家教网 > 高中数学 > 题目详情
17.若tanα=-2,则sin(2α+$\frac{π}{3}$)的值是$\frac{\sqrt{3}-4-4\sqrt{3}}{10}$.

分析 由条件利用三角恒等变换化简所给的式子,从而求得结果.

解答 解:∵tanα=-2,∴sin(2α+$\frac{π}{3}$)=sin2αcos$\frac{π}{3}$+cos2αsin$\frac{π}{3}$=sinαcosα+$\frac{\sqrt{3}}{2}$•(cos2α-sin2α)
=$\frac{sinαcosα+\frac{\sqrt{3}}{2}{(cos}^{2}α{-sin}^{2}α)}{{cos}^{2}α{+sin}^{2}α}$=$\frac{tanα+\frac{\sqrt{3}}{2}(1{-tan}^{2}α)}{1{+tan}^{2}α}$=$\frac{-2+\frac{\sqrt{3}}{2}(1-4)}{1+4}$=$\frac{\sqrt{3}-4-4\sqrt{3}}{10}$,
故答案为:$\frac{\sqrt{3}-4-4\sqrt{3}}{10}$.

点评 本题主要考查三角恒等变换,三角函数的化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2|x-1|-a,g(x)=-|2x+m|,a,m∈R.若关于x的不等式g(x)≥-1的整数解有且仅有一值为-3.
(1)求整数m的值;
(2)若函数y=f(x)的图象恒在函数y=$\frac{1}{2}$g(x)的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.A={x|2x2-px+q=0},B={x|6x2+(p+2)x+q=0},若A∩B={2}.
(1)求p,q的值;
(2)求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列四种说法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知$\frac{cosA}{a}=\frac{cosB}{b}=\frac{cosC}{c}$,则∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,则A=$\frac{π}{3}$
④若a>0,b>0,a+b=2,则a2+b2≥2;
正确的序号有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过函数y=f(x)=x3图象上两点P(1,1)和Q(1+△x,1+△y)作曲线的割线.
(1)求出当△x=0.1时割线的斜率.
(2)求y=f(x)=x3在x=x0处的瞬时变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且对任意的n∈N,有an+Sn=n,设bn=an-1,求证:数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<π),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=$\frac{p}{1-cosθ}$(p>0).
(Ⅰ)写出直线l的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=ax+2-2(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则当$\frac{1}{m}$+$\frac{1}{n}$取最小值时,椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}$+$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$.

查看答案和解析>>

同步练习册答案