精英家教网 > 高中数学 > 题目详情
8.A={x|2x2-px+q=0},B={x|6x2+(p+2)x+q=0},若A∩B={2}.
(1)求p,q的值;
(2)求A∪B.

分析 由条件便知2为方程2x2-px+q=0和方程6x2+(p+2)x+q=0的解,带入方程便可求出p,q,从而可解出这两个方程,然后进行并集的运算即可.

解答 解:(1)∵A∩B={2}.
∴2∈A,2∈B,
∴$\left\{\begin{array}{l}{8-2p+q=0}\\{24+2(p+2)+q=0}\end{array}\right.$,
解得p=-5,q=-18;
(2)∵A={x|2x2+5x-18=0}={-$\frac{9}{2}$,2},B={x|6x2-3x-18=0}={-$\frac{3}{2}$,2},
∴A∪B={-$\frac{9}{2}$,-$\frac{3}{2}$,2},

点评 考查交集的概念,元素与集合的关系,解一元二次方程,以及并集的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示.则该几何体的体积等于(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),若$\overrightarrow{a}$-2$\overrightarrow{b}$与非零向量m$\overrightarrow{a}$+n$\overrightarrow{b}$共线,则$\frac{m}{n}$等于(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=$\frac{1}{5}$x5上一点M处的切线与直线y=3-x垂直,则此切线方程可能为(  )
A.5x-5y-4=0B.5x-5y+4=0.C.5x+5y-4=0D.3x+5y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$.
(1)请作出可行域并用阴影表示,并求出可行域所代表图形的面积;
(2)在(1)条件下,求ω=$\frac{y-1}{x+1}$的取值范围;
(3)在(1)条件下,求z=$\sqrt{(x+5)^{2}+(y+4)^{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.常用的统计调查方式主要有普查、抽样调查、重点调查、典型调查、统计报表等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b,c是△ABC的三边,若直线ax+by+c=0与圆x2+y2=1无公共点,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若tanα=-2,则sin(2α+$\frac{π}{3}$)的值是$\frac{\sqrt{3}-4-4\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不平行,且2x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=(y+1)$\overrightarrow{{e}_{2}}$,则实数x,y的值是(  )
A.x=0,y=2B.x=0,y=-2C.x=2,y=-2D.不能唯一确定

查看答案和解析>>

同步练习册答案