精英家教网 > 高中数学 > 题目详情
18.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不平行,且2x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=(y+1)$\overrightarrow{{e}_{2}}$,则实数x,y的值是(  )
A.x=0,y=2B.x=0,y=-2C.x=2,y=-2D.不能唯一确定

分析 由已知可得2x=0,y+1=3,解得答案.

解答 解:∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不平行,且2x$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=(y+1)$\overrightarrow{{e}_{2}}$,
∴2x=0,y+1=3,
解得:x=0,y=2,
故选:A

点评 本题考查的知识点是平面向量的基本定理及其意义,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.A={x|2x2-px+q=0},B={x|6x2+(p+2)x+q=0},若A∩B={2}.
(1)求p,q的值;
(2)求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<π),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=$\frac{p}{1-cosθ}$(p>0).
(Ⅰ)写出直线l的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=ax+2-2(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则当$\frac{1}{m}$+$\frac{1}{n}$取最小值时,椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)=x3,f′(a)=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinα,cosα是方程x2+ax+2b2=0的两个根,且0≤α<2π,a,b为整数,求角α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的导数:
(1)y=x-sin$\frac{x}{2}$cos$\frac{x}{2}$;
(2)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$;
(3)y=$\frac{1+\sqrt{x}}{1-\sqrt{x}}$+$\frac{1-\sqrt{x}}{1+\sqrt{x}}$;
(4)y=-sin$\frac{x}{2}$(1-2cos2$\frac{x}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}$+$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:选择题

已知sinα=,则cos(α+)=( )

A. B. C. D.

查看答案和解析>>

同步练习册答案