精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1
3
x3+
1
2
ax2+2bx+c,f(x)在x=x1时取得极大值,在x=x2时取得极小值,且x1∈(0,1),x2∈(1,2),则
b-2
a-1
的取值范围为
 
考点:利用导数研究函数的极值
专题:导数的综合应用
分析:求导数,利用导函数f′(x)=x2+ax+b的图象开口朝上且x1∈(0,1),x2∈(1,2),得a,b的约束条件,据线性规划求出最值.
解答: 解:∵函数f(x)=
1
3
x3+
1
2
ax2+2bx+c,在x=x1处取得极大值,在x=x2处取得极小值,
∴x1,x2是导函数f′(x)=x2+ax+2b的两根
由于导函数f′(x)=x2+ax+2b的图象开口朝上且x1∈(0,1),x2∈(1,2),
b>0
1+a+2b<0
4+2a+2b>0
满足条件的约束条件的可行域如图所示:
令Z=
b-2
a-1
,则其几何意义是区域内的点与P(1,2)连线的斜率,
∴由
b=0
1+a+2b=0
,可得a=-1,b=0,B(-1,0),kPB=
0-2
-1-1
=1
1+a+2b=0
4+2a+2b=0
,可得a=-3,b=1,可得A(-3,1),kPA=
1-2
-3-1
=
1
4

b-2
a-1
∈(
1
4
,1).
故答案为:(
1
4
,1).
点评:本题考查函数的导数,函数的极值以及不等式求解函数的最值,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e1-x(2ax-a2)(其中a≠0).
(Ⅰ)若函数f(x)在(2,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)设函数f(x)的最大值为g(a),当a>0时,求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=2x2+1分别满足下列条件,请求出切点的坐标
(1)切线的倾斜角为45°
(2)平行于直线4x-y-2=0
(3)垂直于直线x+8y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=
an
man+1
,且a1=4.
(1)当m=1时,证明{
1
an
}是等差数列;
(2)当m=2n时,求数列{an}的通项公式;
(3)在(2)的条件下,记bn=
anan+1
,数列{bn}的前n项和为Tn,证明:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为a、b、c,且满足b+c≤3a,则
c
a
的取值范围是(  )
A、(1,+∞)
B、(0,2)
C、(1,3)
D、(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,a2=3,an+1=3an-2an-1(n∈N*,n≥2)
(Ⅰ)证明:数列{an+1-an}是等比数列,并求出{an}的通项公式
(Ⅱ)设数列{bn}满足bn=2log4(an+1)2,证明:对一切正整数n,有
1
b
2
1
-1
+
1
b
2
2
-1
+…+
1
b
2
n
-1
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
π
2
0
e2xcosxdx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
3
x3+bx2+cx,g(x)=mx2+
15
4
x
-9
(1)当a=3,b=c=0时,若存在过点(1,0)的直线与曲线y=f(x)和y=g(x)都相切,求实数m的值;
(2)当b>a>0时,函数y=f(x)在R上单调递增,求
a+b+c
b-a
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
C
1
9
C
1
9
C
1
18
C
3
36
+
C
1
9
C
2
9
C
3
36

查看答案和解析>>

同步练习册答案