精英家教网 > 高中数学 > 题目详情
2.已知0<a<b<c,且a,b,c是成等比数列的整数,n为大于1的整数,则logan,logbn,logcn(  )
A.成等差数列B.成等比数列
C.各项倒数成等差数列D.以上都不对

分析 a,b,c是成等比数列的整数,可得b2=ac.计算$\frac{2}{lo{g}_{b}n}$-$\frac{1}{lo{g}_{a}n}$-$\frac{1}{lo{g}_{c}n}$即可判断出结论.

解答 解:∵a,b,c是成等比数列的整数,∴b2=ac.
∵n为大于1的整数,0<a<b<c,
∴$\frac{2}{lo{g}_{b}n}$-$\frac{1}{lo{g}_{a}n}$-$\frac{1}{lo{g}_{c}n}$
=2lognb-logan-logcn
=$lo{g}_{n}\frac{{b}^{2}}{ac}$=logn1=0,
则logan,logbn,logcn各项倒数成等差数列.
故选:C.

点评 本题考查了等差数列与等比数列的通项公式及其性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在□ABCD中,AD=2,AB=3,对角线BD=3,试用向量的方法求对角线AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和Sn=27-33-n,则数列{anan+1an+2}的前3项和等于(  )
A.216B.224C.$\frac{6056}{27}$D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:${C}_{m}^{7}$-C${\;}_{m+1}^{8}$+C${\;}_{m}^{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则向量2$\overrightarrow{a}$+3$\overrightarrow{b}$在向量2$\overrightarrow{a}$+$\overrightarrow{b}$方向上的投影为(  )
A.$\frac{19\sqrt{13}}{13}$B.$\frac{6\sqrt{13}}{13}$C.$\frac{5\sqrt{6}}{6}$D.$\frac{8\sqrt{3}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)离y轴最近的零点与最大值均在抛物线y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1上,则f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinx-sin($\frac{3π}{2}$-x)=$\sqrt{2}$,则 tan x+tan($\frac{3π}{2}$-x)的值是(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z1=2+3i,z2=a+bi(a,b∈R),z3=1-4i在复平面内对应的点分别为A,B,C,O为原点,若$\overrightarrow{OC}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$,则3a-b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.北京市某校组织学生惨叫英语测试,某班50人的成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100),已知前3组的人数依次构成等比数列,第2组、第4组、第3组的人数依次构成等差数列,则及格(大于等于60分)的人数是35.

查看答案和解析>>

同步练习册答案