精英家教网 > 高中数学 > 题目详情
16.如图,网格纸上的小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体外接球的体积为$8\sqrt{6}π$.

分析 作出几何体的直观图,建立坐标系,利用距离公式列方程求出外接球的球心坐标,从而得出外接球的半径,代入体积公式计算得出答案.

解答 解:几何体为三棱锥,直观图如图所示:
其中PA⊥底面ABC,AB⊥BC,BC=4,AB=PA=2,
以B为原点建立如图所示的空间坐标系B-xyz,
则A=(2,0,0),B(0,0,0),C(0,4,0),P(2,0,2),
设棱锥的外接球球心为M(x,y,z),则MA=MB=MC=MP,
即(x-2)2+y2+z2=x2+y2+z2=x2+(y-4)2+z2=(x-2)2+y2+(z-2)2
∴x=1,y=2,z=1,
∴外接球半径R=|MB|=$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$=$\sqrt{6}$.
∴外接球的体积V=$\frac{4}{3}π{R}^{3}$=8$\sqrt{6}$π.
故答案为:8$\sqrt{6}$π.

点评 本题考查了棱锥的三视图,棱锥与外接球的位置关系,体积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.对于无穷数列{xn}和函数f(x),若xn+1=f(xn)(n∈N+),则称f(x)是数列{xn}的母函数.
(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且$g({\frac{1}{2}})=1$;又数列{an}满足${a_n}=g({\frac{1}{2^n}})$.
(1)求证:f(x)=x+2是数列{2nan}的母函数;
(2)求数列{an}的前项n和Sn
(Ⅱ)已知$f(x)=\frac{2016x+2}{x+2017}$是数列{bn}的母函数,且b1=2.若数列$\left\{{\frac{{{b_n}-1}}{{{b_n}+2}}}\right\}$的前n项和为Tn,求证:$25({1-{{0.99}^n}})<{T_n}<250({1-{{0.999}^n}})({n≥2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{27}{2}$B.27C.$27\sqrt{2}$D.$27\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为(  )
A.32πB.48πC.50πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某三棱柱的三视图如图所示,该三棱柱的外接球的表面积为(  )
A.32+8$\sqrt{5}$B.36πC.18πD.$\frac{40\sqrt{10}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若△ABC三边长分别为a、b、c,内切圆的半径为r,则△ABC的面积$S=\frac{1}{2}r(a+b+c)$,类比上述命题猜想:若四面体ABCD四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体ABCD的体积V=$\frac{1}{3}$r(S1+S2+S3+S4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${cos^2}\frac{3π}{8}-{sin^2}\frac{3π}{8}$=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩阵A=$[\begin{array}{l}{1}&{0}\\{0}&{\sqrt{2}}\end{array}]$所对应的变换T把曲线C变成曲线C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,求曲线C的方程.

查看答案和解析>>

同步练习册答案