精英家教网 > 高中数学 > 题目详情
已知定义在上的奇函数,当时,
(1)求函数上的解析式;(2)若函数在区间上单调递增,求实数的取值范围。
(1)(2)

试题分析:(1)因为x>0的解析式去为所以可以求x<0的解析式函数是奇函数所以f(0)=0综上所述(2)要使f(x)在[-1,a-2]上单调递增.由图像可知解得不等式为:.
试题解析:(1)设x<0,则-x>0, .  3分
又f(x)为奇函数,所以f(-x)=-f(x).
于是x<0时   5分
所以  6分
(2)要使f(x)在[-1,a-2]上单调递增, (画出图象得2分)
结合f(x)的图象知    10分
所以故实数a的取值范围是(1,3].  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为实数,
(1)若,求 上的最大值和最小值;
(2)若上都是递增的,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已函数是定义在上的奇函数,在.
(1)求函数的解析式;并判断上的单调性(不要求证明);
(2)解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知上的奇函数,且当时,.
(1)求的表达式;
(2)画出的图象,并指出的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a-.
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x1,x2是关于x的一元二次方程x2-(m-1)x-(m-1)=0的两个解,设y=f(m)=(x1+x22-x1x2,求函数y=f(m)的解析式及值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P1(x1,y1),P2(x2,y2)是正比例函数y=-x图象上的两点,则下列判断正确的是(  )
A.y1>y2
B.y1<y2
C.当x1<x2时,y1>y2
D.当x1<x2时,y1<y2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间内递减,那么实数的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数满足 且当时总有,其中.
,则实数的取值范围是       .

查看答案和解析>>

同步练习册答案