精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,已知这个几何体的体积为10
3
,则h=
 

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:根据三视图判断几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,高为h,四棱锥的底面为矩形,矩形的长和宽分别为5和6;把数据代入棱锥的体积公式,根据体积为10
3
求出h.
解答: 解:由三视图知几何体四棱锥,且四棱锥的一条侧棱与底面垂直,高为h,
四棱锥的底面为矩形,矩形的长和宽分别为5和6;
则几何体的体积V=
1
3
×5×6×h=10
3

∴h=
3

故答案为:
3
点评:本题考查了由三视图求几何体的体积,判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x+a
,若函数f(x)=2013x的图象上存在点(x0,y0)使得f(f(y0))=y0,求a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若(2x+
a
x
4(a>0)的展开式中常数项为96,则实数a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥底面半径为1,高为2,则圆锥的侧面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)若
a
b
=
a
c
,则
b
=
c

(2)对空间任意点O与不共线的三点A,B,C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),则P,A,B,C四点共面;
(3)“曲线C上的点的坐标都是方程f(x,y)=0的解”是“曲线C的方程是f(x,y)=0”的必要条件;
(4)(
c
b
a
-(
a
c
b
c
垂直.
写出以上命题为真命题的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n⊥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2sin(
π
8
x+
π
4
)(-2<x<14)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(
OB
+
OC
)•
OA
=(其中O为坐标原点)(  )
A、-32B、32
C、-72D、72

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln(x+1)与y=
1
x
的图象交点的横坐标所在区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

同步练习册答案