精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A-PC-B的余弦值.
考点:用空间向量求平面间的夹角,直线与平面平行的性质,与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角,空间向量及应用
分析:(1)利用线面垂直的判定定理,证明BD⊥平面PAC,可得BD⊥PC;
(2)设取DC中点G,连接FG,证明平面EFG∥平面PAD,可得FG∥平面PAD,求出AD=CD,即可求AF的长;
(3)建立空间直角坐标系,求出平面PAC、平面PBC的法向量,利用向量的夹角公式,即可求二面角A-PC-B的余弦值.
解答: (1)证明:∵△ABC是正三角形,M是AC中点,
∴BM⊥AC,即BD⊥AC.
又∵PA⊥平面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC.
∴BD⊥PC.
(2)解:取DC中点G,连接FG,则EG∥平面PAD,

∵直线EF∥平面PAD,EF∩EG=E,
∴平面EFG∥平面PAD,
∵FG?平面EFG,
∴FG∥平面PAD
∵M为AC中点,DM⊥AC,
∴AD=CD.
∵∠ADC=120°,AB=4,
∴∠BAD=∠BAC+∠CAD=90°,AD=CD=
4
3
3

∵∠DGF=60°,DG=
2
3
3
,∴AF=1
(3)解:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,

∴B(4,0,0),C(2,2
3
,0),D(0,
4
3
3
,0),P(0,0,4).
DB
=(4,-
4
3
3
,0)为平面PAC的法向量.
设平面PBC的一个法向量为
n
=(x,y,z),则
PC
=(2,2
3
,-4),
PB
=(4,0,-4),
2x+2
3
y-4z=0
4x-4z=0

令z=3,得x=3,y=
3
,则平面PBC的一个法向量为
n
=(3,
3
,3),
设二面角A-PC-B的大小为θ,则cosθ=
n
DB
|
n
||
DB
|
=
7
7

∴二面角A-PC-B余弦值为
7
7
点评:本题考查线面垂直的判定定理与性质,考查二面角,考查学生分析解决问题的能力,考查向量法的运用,确定平面的法向量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,平面PAB⊥平面ABCD,PA=PB=2AB.
(1)证明:PC⊥AB;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
p
|=8,|
q
|=6,
p
q
的夹角为30°,求|
p
-
q
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
4x-x2
,当x∈(0,4]时,f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a、b、c∈Z),已知方程f(x)=0在区间(-2,0)内有两个不等的实根,且对任意实数x恒有4x+2≤f(x)≤8x2+12x+4,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆锥顶点为P,其母线与底面所成的角为60°,AB过底面圆心O点,且∠CBA=60°.
(Ⅰ)试在圆0上找一点D,使得BD与平面PAC平行;
(Ⅱ)二选一:(两题都做,按第一题的解答给分)
    ①求直线PB与面PAC所成的角的正弦值
    ②二面角B-PA-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,g(x)=x2-bx a、b∈R.
(1)若集合{x|f(x)=2x+2}只含有一个元素,试求实数a的值;
(2)在(1)的条件下,当m∈[2,4],n∈[1,5]时有f(m)大于等于g(n)恒成立,试求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△BCD与△MCD都是边长为2的正三角形,O是CD的中点,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2
3

(1)求证:MO∥面ABC;
(2)求平面ACM与平面BCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,已知这个几何体的体积为10
3
,则h=
 

查看答案和解析>>

同步练习册答案