精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-
4x-x2
,当x∈(0,4]时,f(x)<0恒成立,求实数a的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:将不等式f(x)<0恒成立,将参数进行分离,然后求函数的最值即可得到结论.
解答: 解:∵(x)=ax-
4x-x2
,当x∈(0,4]时,f(x)<0恒成立,
∴ax<
4x-x2

当x∈(0,4]时,
a<
4x-x2
x
=
4x-x2
x2
=
4
x
-1

当x∈(0,4]时,
4
x
-1≥0
,即
4
x
-1
≥0

∴要使f(x)<0恒成立,
则a<0.
点评:本题主要考查不等式恒成立问题,利用参数分离法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图.若输入x=7,则输出k的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负数a、b、c满足a+b+c=1,证明:
ab
c+1
+
bc
a+1
+
ca
b+1
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,AB∥CD,△PAB和△PAD是两个边长为2的正三角形.DC=4,PD⊥PB,点E在线段CD上.
(Ⅰ)当
DE
EC
为何值时,AE⊥面PBD:
(Ⅱ)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+2,g(x)=aln(x-1)-2a+6(a为常数),
(1)当x∈[2,+∞)时f(x)≥g(x)恒成立,求实数a的取值范围;
(2)若函数h(x)=xf(x)有对称中心为A(1,0),求证:函数h(x)的切线L在切点处穿过h(x)图象的充要条件是L恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)求异面直线D1E与A1D所成角.
(2)AE等于何值时,二面角D1-EC-D的大小为
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=
1
3
PC
,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(2x+
a
x
4(a>0)的展开式中常数项为96,则实数a等于
 

查看答案和解析>>

同步练习册答案