精英家教网 > 高中数学 > 题目详情
3.已知集合E={x||x-1|≥m},F=$\{x|\frac{10}{x+6}>1\}$.
(1)若m=3,求E∩F;
(2)若E∩F=∅,求实数m的取值范围.

分析 (1)m=3时求出集合E,化简集合F,计算E∩F即可;
(2)由E∩F=∅,得出关于m的不等式组,从而求出m的取值范围.

解答 解:(1)由|x-1|≥3,得 x-1≥3或x-1≤-3,
解得x≥4或x≤-2,
所以 E=(-∞,-2]∪[4,+∞);
由$\frac{10}{x+6}$-1>0,得$\frac{10-x-6}{x+6}$>0;
即(x-4)(x+6)<0,
解得-6<x<4;
所以F=(-6,4);
所以E∩F=(-6,-2];
(2)E∩F=∅,
则有m>0,E=(-∞,1-m]∪[1+m,+∞),
即$\left\{{\begin{array}{l}{1-m≤-6}\\{1+m≥4}\end{array}}\right.$,
解得$\left\{\begin{array}{l}{m≥7}\\{m≥3}\end{array}\right.$,
所以实数m的取值范围是m≥7.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别为△ABC内角A,B,C的对边,且$cosBcosC-sinBsinC=-\frac{1}{2}$.
(1)求A的值.            
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$\sqrt{3}$x+3y+a=0的倾斜角为(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为(  )
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)是函数y=3x的反函数,则$f({\frac{1}{9}})$=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P在△ABC所在平面上,若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,且S△ABC=12,则△PAB的面积为(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|1≤x≤5},C={x|-a≤x≤a+3},若C∩A=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,输出的结果是(  )
A.65B.45C.55D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示的三棱柱ABE-DCF中,AB=AF,BE=EF=2.
(Ⅰ)证明:AE⊥BF;
(Ⅱ)若∠BEF=60°,AE=$\sqrt{2}$AB=2,求三棱柱ABE-DFC的体积.

查看答案和解析>>

同步练习册答案