精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足:a1=1,nan+1﹣(n+1)an=1(n∈N+
(1)求数列{an}的通项公式;
(2)若 ,求数列{bn}的最大项.

【答案】
(1)解:已知式可化为

则当n≥2时, =

=

=1﹣

以上各式相加: =1﹣

整理得:an=2n﹣1,

当n=1时,显然成立,

∴数列{an}的通项公式an=2n﹣1;(n∈N+


(2)解:由 ,则bn=n×( n,n∈N+

设g(x)=x( x,x>0,求导g′(x)=( x+x( xln( ),

令g′(x)=0,解得:x=﹣ ,8<﹣ <9,

由g(x)在(0,﹣ )单调递增,在(﹣ ,+∞)单调递减,

∴数列{bn}的单调性得最大项为


【解析】(1)由 .采用累加法即可求得数列{an}的通项公式;(2)由(1)可知bn=n×( n , n∈N+ , 根据导数与函数单调性的关系,即可求得数列{bn}的最大项.
【考点精析】掌握数列的通项公式是解答本题的根本,需要知道如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,则方程实数根的个数为 ( )

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,则称A1 , A2 , A3 , …,An为集合A的一种拆分,所有拆分的个数记为f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90100),[100110),[140150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求分数在[120130)内的频率;

2)若在同一组数据中,将该组区间的中点值(如:组区间[100110)的中点值为=105)作为这组数据的平均分,据此,估计本次考试的平均分;

3)用分层抽样的方法在分数段为[110130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120130)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测技改后生产100吨甲产品比技改前少消耗多少吨标准煤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x(ex﹣1)﹣ax2(e=2.71828…是自然对数的底数).
(1)若 ,求函数f(x)的单调区间;
(2)若f(x)在(﹣1,0)内无极值,求a的取值范围;
(3)设n∈N* , x>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点P( ,1),直线l的参数方程为t为参数)若以O为极点,以Ox为极轴,选择相同的单位长度建立极坐标系,则曲线C的极坐标方程为ρ= cos(θ-

(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;

(Ⅱ)设直线l与曲线C相交于A,B两点,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若按右侧算法流程图运行后,输出的结果是 ,则输入的N的值可以等于(

A.4
B.5
C.6
D.7

查看答案和解析>>

同步练习册答案