精英家教网 > 高中数学 > 题目详情
有下列结论:
①相等的角在直观图中仍然相等;
②相等的线段在直观图中仍然相等;
③若两条线段平行,则在直观图中对应的两条线段仍然平行.其中结论正确的是
 
.(填序号)
考点:平面图形的直观图,命题的真假判断与应用
专题:空间位置关系与距离,简易逻辑
分析:通过举反例得到①错;通过斜二测画法的法则:平行性不变;平行于x轴的长度也不变,但平行于y轴的线段长度变味原来的一半.,判断出②、③的正误.
解答: 解:对于①,例如一个等腰直角三角形,画出直观图后不是等腰直角三角形,故①错
对于②,相等的线段在直观图中仍然相等,例如正方形在直观图中是平行四边形,邻边不相等,②错误;
对于③,由于斜二测画法的法则是平行于x的轴的线平行性与长度都不变;但平行于y轴的线平行性不变,但长度变为原长度的一半,故③正确;
故答案为:③.
点评:本题考查画直观图的方法:斜二测画法,其法则是平行性不变;平行于x轴的长度也不变,但平行于y轴的线段长度变味原来的一半.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q).
(1)当p+q≤0时,求椭圆的离心率的取值范围;
(2)若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,(
MF
+
OD
).
MO
的最小值为
7
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,右焦点F2到直线l1:3x+4y=0的距离为
3
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证:k•k′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,且x≠1,数列{an}的前n项和为Sn,它满足条件
xn-1
Sn
=1-
1
x
,数列{bn}中,bn=an•lgan
(1)求数列{bn}的前n项和Tn
(2)若对一切n∈N*都有bn<bn+1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出四个命题:其中所有的正确命题的序号是
 

①存在实数α,使sinαcosα=1;
②存在实数α,使sinα+cosα=
3
2

y=sin(
2
-2x)
是偶函数;
x=
π
8
是函数y=sin(2x+
4
)
的一条对称轴方程;
⑤若α,β是第一象限角,且α>β,则sinα>sinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+2y≥2
ex-y≥0
0≤x≤2
,则M(x,y)所在平面区域的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1
-1
sinxdx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),
g(n)-g(m)
n-m
>0
恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③任意a∈R,g(x)的导函数g′(x)有两个零点;
④若a≥1,b<0,则方程g(x)=0必有3个实数根;
其中,所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的茎叶图表示柜台记录的一天销售额情况(单位:元),则销售额中的中位数是(  )
A、30.5B、31.5
C、31D、32

查看答案和解析>>

同步练习册答案