精英家教网 > 高中数学 > 题目详情
19.已知复数z=1-i,则$\frac{{z}^{2}-2z}{z-1}$的虚部是(  )
A.0B.2C.-2iD.-2

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:∵z=1-i,∴$\frac{{z}^{2}-2z}{z-1}$=$\frac{(1-i)^{2}-2(1-i)}{1-i-1}$=$\frac{-2i-2+2i}{-i}$=$\frac{2}{i}$=-2i,
其虚部是-2.
故选:D.

点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2cos(${\frac{π}{3}$x+φ)图象的一个对称中心为(2,0),且|φ|<$\frac{π}{2}$.要得到函数f(x)的图象,可将函数y=2cos$\frac{π}{3}$x的图象(  )
A.向左平移$\frac{1}{2}$个单位长度B.向右平移$\frac{1}{2}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,双曲线中心在原点,焦点在x轴上,渐近线方程为4x±3y=0,则它的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{\sqrt{7}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数为(  )
①命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
②若命题P:?x∈R,x2+x+1≠0,则¬p:?x∈R,x2+x+1=0
③若p∨q为真命题,则p,q均为真命题
④“x>3”是“x2-3x+2>0”的充分不必要条件
⑤在△ABC中,若A>B,则sinA>sinB.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)为偶函数,且在(0,+∞)单调递增,f(-1)=0,则满足f(2x-1)<0的x的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,若A=30°,b=16,此三角形的面积S=64,则△ABC中角B为(  )
A.75°B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数(1+2i)2(其中i为虚数单位)的虚部为(  )
A.4B.-4C.4iD.-4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(-2,3),若(λ$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则λ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={e^x}-\frac{1}{2}{x^2}-x,x≥0$.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若f(x)≥ax+1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案