精英家教网 > 高中数学 > 题目详情
16.已知双曲线C的一个焦点与抛物线${C_1}:{y^2}=-16x$的焦点重合,且其离心率为2.
(1)求双曲线C的方程;
(2)求双曲线C的渐近线与抛物线C1的准线所围成三角形的面积.

分析 (1)$c=4,\frac{c}{4}=2$,可得a2=4,b2=12,即可求双曲线C的方程;
(2)双曲线C的渐近线方程y=±$\sqrt{3}$x与抛物线C1的准线x=4,联立得交点坐标求双曲线C的渐近线与抛物线C1的准线所围成三角形的面积.

解答 解:(1)$c=4,\frac{c}{4}=2$.∴a2=4,b2=12,双曲线C的方程$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}$=1,
(2)双曲线C的渐近线方程y=±$\sqrt{3}$x与抛物线C1的准线x=4,联立得交点坐标为$(4,4\sqrt{3}),(4,-4\sqrt{3})$,
所以三角形的面积为$S=16\sqrt{3}$.

点评 本题考查双曲线的方程与性质,考查抛物线的性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.给定集合S={x1,x2,…,xn}(n≥2,xk∈R且xk≠0,1≤k≤n),(且),定义点集T={(xi,xj)|xi∈S,xj∈S}.若对任意点A1∈T,存在点A2∈T,使得$\overrightarrow{O{A_1}}•\overrightarrow{O{A_2}}=0$(O为坐标原点),则称集合S具有性质P.给出以下四个结论:
①{-5,5}具有性质P;
②{-2,1,2,4}具有性质P;
③若集合S具有性质P,则S中一定存在两数xi,xj,使得xi+xj=0;
④若集合S具有性质P,xi是S中任一数,则在S中一定存在xj,使得xi+xj=0.
其中正确的结论有①③.(填上你认为所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为$2\sqrt{5}$,且双曲线的一条渐近线方程为x-2y=0,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π),在同一周期内,当$x=\frac{π}{12}$时,f(x)取得最大值3;当$x=\frac{7π}{12}$时,f(x)取得最小值-3.
(1)求函数f(x)的解析式和图象的对称中心;
(2)若$x∈[{-\frac{π}{3},\frac{π}{6}}]$时,关于x的方程2f(x)+1-m=0有且仅有一个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2km,大圆的半径为4km,卫星P在圆环内无规则地自由运动,运行过程中,则点P与点O的距离小于3km的概率为(  )
A.$\frac{1}{12}$B.$\frac{5}{12}$C.$\frac{1}{3}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}中,其公比为2,则$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求证:直线ED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的边长为a,b,c,定义它的等腰判别式为D=max{a-b,b-c,c-a}+min{a-b,b-c,c-a},则“D=0”是△ABC为等腰三角形的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个顶点坐标分别为A(1,4)、B(5,-2)、C(1,2),求:
(1)边BC中点D的坐标;
(2)BC边上中线AD的长度.

查看答案和解析>>

同步练习册答案