精英家教网 > 高中数学 > 题目详情
已知向量
a
=(λ,-2),
b
=(-3,5),若向量
a
b
的夹角为钝角,求λ的取值范围.
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:由题意可得
a
b
不共线且
a
b
<0,即
λ
-3
-2
5
,且-3λ-10<0,由此求得λ的取值范围.
解答: 解:由题意可得
a
b
不共线且
a
b
<0,∴
λ
-3
-2
5
,且-3λ-10<0,
求得λ≠
6
5
 且λ>-
10
3

即λ的取值范围为{λ|λ>-
10
3
,且λ≠
6
5
}.
点评:本题主要考查两个向量共线的性质,两个向量的数量积的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=
2
x
+
1
1-x
(0<x<1),则f(x)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(-1)=f(3)=0,在区间(-2,0)上是减函数,在区间(2,+∞)是增函数,函数F(x)=
xf(-x),x<0
-f(x),x>0
,则{x|F(x)>0}=(  )
A、{x|x<-3,或0<x<2,或x>3}
B、{x|x<-3,或-1<x<0,或0<x<1,或x>3}
C、{x|-3<x<-1,或1<x<3}
D、{x|x<-3,或0<x<1,或1<x<2,或2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

体育彩票000001~100000编号中,凡彩票号码最后三位数为345的中一等奖,采用的是系统抽样法吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1+x
1+ax
(a≠1)是奇函数,
(1)求a的值;
(2)若g(x)=f(x)+
2
1+2x
,x∈(-1,1),求g(
1
2
)+g(-
1
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:方程x2+ax+1=0的两实根的平方和大于3的必要条件是|a|>
3
,这个条件是其充分条件吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)从若干张扑克牌中随机抽取一张,如果取到红心(事件A)的概率是
1
4
,取到方片(事件B)的概率是
1
4
.求:取到红色牌(事件C)的概率,取到黑色牌(事件D)的概率;
(2)同时掷两个骰子,计算向上的点数之和是6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4-4x3-4x2-1.
(1)设g(x)=bx2-1,若方程f(x)=g(x)的解集恰好有3个元素,求b的取值范围;
(2)在(1)的条件下,是否存在实数对(m,n),使f(x-m)+g(x-n)为偶函数?如存在,求出m、n;如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列推理是否正确?若不正确,指出错误之处.
(1)求证:四边形的内角和等于360°.
证明:设四边形ABCD是矩形,则它的四个角都是直角,有∠A+∠B+∠C+∠D=90°+90°+90°+90°=360°,所以四边形的内角和为360°.
(2)已知
2
3
都是无理数,试证:
2
+
3
也是无理数.
证明:设
2
3
都是无理数,而无理数与无理数之和是无理数,
所以
2
+
3
必是无理数.
(3)已知实数m满足不等式(2m+1)(m+2)<0,用反证法证明:关于x的方程x2+2x+5-m2=0无实根.
证明:假设方程x2+2x+5-m2=0有实根.由已知实数m满足不等式(2m+1)(m+2)<0,解得-2<m<-
1
2
,又关于x的方程x2+2x+5-m2=0的判别式△=4-4(5-m2)=4(m2-4),∵-2<m<-
1
2
,∴
1
4
<m2<4,∴△<0,即关于x的方程x2+2x+5-m2=0无实根.

查看答案和解析>>

同步练习册答案