精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)满足f(-1)=f(3)=0,在区间(-2,0)上是减函数,在区间(2,+∞)是增函数,函数F(x)=
xf(-x),x<0
-f(x),x>0
,则{x|F(x)>0}=(  )
A、{x|x<-3,或0<x<2,或x>3}
B、{x|x<-3,或-1<x<0,或0<x<1,或x>3}
C、{x|-3<x<-1,或1<x<3}
D、{x|x<-3,或0<x<1,或1<x<2,或2<x<3}
考点:分段函数的应用
专题:计算题,综合题,函数的性质及应用
分析:根据奇函数f(x)满足f(-1)=f(3)=0,在区间(-2,0)上是减函数,在区间(2,+∞)是增函数,可得-3<x<-1或0<x<1,或x>3时,f(x)>0;x<-3或-1<x<0或1<x<3时,f(x)<0,再将不等式等价变形,即可得到结论.
解答: 解:∵奇函数f(x)满足f(-1)=f(3)=0,
在区间(-2,0)上是减函数,在区间(2,+∞)是增函数,
∴-3<x<-1或0<x<1,或x>3时,f(x)>0;
x<-3或-1<x<0或1<x<3时,f(x)<0.
∵函数F(x)=
xf(-x),x<0
-f(x),x>0

∴x>0且-f(x)>0,或x<0且xf(-x)>0时,F(x)>0,
∴x>0且f(x)<0,或x<0且f(x)>0时,F(x)>0,
∴-3<x<-1或1<x<3,
故选C.
点评:本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-mx+5,m∈R,它在(-∞,-2]上单调递减,则f(1)的取值范围是(  )
A、f(1)=15
B、f(1)>15
C、f(1)≤15
D、f(1)≥15

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、三点确定一个平面
B、四边形一定是平面图形
C、梯形一定是平面图形
D、平面α和平面β有不同在一条直线上的三个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个推导过程:
①∵a,b∈R+,∴(
b
a
)+(
a
b
)≥2
lgxlgy
=2;
②∵x,y∈R+,∴lgx+lgy≥2
lgxlgy

③∵a∈R,a≠0,∴(
4
a
)+a≥2
4
a
•a
=4;
④∵x,y∈R,xy<0,∴(
x
y
)+(
y
x
)=-[(-(
x
y
))+(-(
y
x
))]≤-2
(-
x
y
)(-
y
x
)
=-2.
其中正确的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-3,2]都有f(x)>
4
c
-
1
2
,(c>0)恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有(  )
A、6种B、8种
C、36种D、48种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为60°,|
a
|=10,|
b
|=8,求:
(1)|
a
+
b
|;
(2)
a
+
b
a
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(λ,-2),
b
=(-3,5),若向量
a
b
的夹角为钝角,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过点P(1,
2
2
),离心率e=
2
2
.求椭圆E的方程.

查看答案和解析>>

同步练习册答案