精英家教网 > 高中数学 > 题目详情
1.若两个相似三角形的周长比为3:4,则它们的三角形面积比是9:16.

分析 根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.

解答 解:∵两个相似三角形的周长比为3:4,
∴两个相似三角形的相似比为3:4,
∴两个相似三角形的面积比为9:16,
故答案为:9:16.

点评 本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(理)试卷(解析版) 题型:选择题

设函数,则使得成立的的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,AA1=2AB=2a,AE=CF=λAA1(0<λ<1),
(1)试在BC上找一点P,使得A1B∥面PEF;
(2)在(1)的条件下,当λ为何值时,四面体BPFE的体积最大?
(3)在(2)的条件下,求面PEF与底面ABC所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD=4AP,∠BAD=∠PAD=60°,E,F分别是AP,AD的中点.
(Ⅰ)求证:平面BEF⊥平面PAD;
(Ⅱ)求二面角P-BE-F的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=(3x+1)ex+1+kx(k≥-2),若存在唯一整数m,使f(m)≤0,则实数k的取值范围是(  )
A.($\frac{5}{e}$,2]B.[$\frac{5}{2e}$,2)C.(-$\frac{1}{2}$,-$\frac{5}{2e}$]D.[-2,-$\frac{5}{2e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.公差不为0的等差数列{an}的前n项和为Sn,且a1=1,S1,S2,S4成等比数列
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{S}_{n}}$,证明对任意的n∈N*,b1+b2+b3+…+bn<2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设点M在圆C:(x-4)2+(y-4)2=8上运动,点A(6,1),O为原点,则MO+2MA的最小值为$2\sqrt{17}-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果AF的倾斜角为$\frac{2π}{3}$,则|PF|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{1}{2}{x^2},g(x)=elnx$.
(Ⅰ)设函数F(x)=f(x)-g(x),求F(x)的单调区间;
(Ⅱ)若存在常数k,m,使得f(x)≥kx+m对x∈R恒成立,且g(x)≤kx+m对x∈(0,+∞)恒成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.
(ⅰ)证明f(x)≥g(x);
(ⅱ)试问:f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案