精英家教网 > 高中数学 > 题目详情
已知a,b∈R+,且a+2b≤c≤1,则
1
a
+
1
b
+
1
c
的最小值
 
考点:基本不等式
专题:计算题,不等式的解法及应用
分析:
1
a
+
1
b
+
1
c
1
a
+
1
b
+1≥
1
1-2b
+
1
b
+1=
1
1-2b
+
2
b
+1
=(
1
1-2b
+
2
2b
)(1-2b+2b)+1
=
2b
1-2b
+
2(1-2b)
2b
+4,注意等号取得的条件.
解答: 解:∵a,b∈R+,且a+2b≤c≤1,
1
a
+
1
b
+
1
c
1
a
+
1
b
+1≥
1
1-2b
+
1
b
+1=
1
1-2b
+
2
b
+1

=(
1
1-2b
+
2
2b
)(1-2b+2b)+1
=
2b
1-2b
+
2(1-2b)
2b
+4
≥2
2b
1-2b
2(1-2b)
2b
+4=2
2
+
4,
当且仅当c=1,a+2b=1,
2b
1-2b
=
2(-2b)
2b
,即c=1,a=
2
-1
,b=1-
2
2
时取等号,
∴c=1,a=
2
-
1,b=1-
2
2
时,
1
a
+
1
b
+
1
c
取最小值4+2
2

故答案为:4+2
2
点评:该题考查利用基本不等式求函数的最值,根据已知条件对不等式进行灵活变形是解题关键,注意基本不等式的应用条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两人射击,已知甲每次击中目标的概率为
1
4
,乙每次击中目标的概率为
1
3

(1)两人各射击一次,求至少有一人击中目标的概率;
(2)若制定规则如下:两人轮流射击,每人至多射击2次,甲先射,若有人击中目标即停止射击.
①求乙射击次数不超过1次的概率;
②记甲、乙两人射击次数和为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有
 
(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论中:
①当x>0且x≠1时,lgx+
1
lgx
≥2;
②当0<x≤2时,x-
1
x
的最大值为
3
2

③a2>b2,ab>0⇒
1
a
1
b

④不等式x+
2
x+1
>2的解集为(-1,0)∪(1,+∞)
正确的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足方程z2+2=0,则z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1,若关于x的不等式f(x2-ax+b)<1的解集为{x|-3<x<2},则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算
(1-4i)(1+i)+2+4i
3+4i
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意x∈R,都有f(x+1)=f(x),g(x+1)=-g(x),且h(x)=f(x)g(x)在[0,1]上的值域[-1,2],则h(x)在[0,2]上的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:
①实数都在实轴上;
②z∈C,则|z|=
z
.
z

③虚数都在虚轴上;
④z∈C,|z|=1,则z=±1;
⑤z∈C,则z为纯虚数的充要条件是
.
z
=-z;
⑥z∈C,则|z|2=z2
⑦z1,z2∈C,若z12+z22=0,则z1=z2=0
其中真命题的编号是
 

查看答案和解析>>

同步练习册答案