精英家教网 > 高中数学 > 题目详情
17.当x∈(0,3)时,关于x的不等式ex-x-2mx>0恒成立,则实数m的取值范围是(  )
A.(-∞,$\frac{e-1}{2}$)B.($\frac{e-1}{2}$,+∞)C.(-∞,e+1)D.(e+1,+∞)

分析 由题意可得2m+1<$\frac{{e}^{x}}{x}$在(0,3)的最小值,求出f(x)=$\frac{{e}^{x}}{x}$的导数和单调区间,可得f(x)的最小值,解不等式即可得到m的范围.

解答 解:当x∈(0,3)时,关于x的不等式ex-x-2mx>0恒成立,
即为2m+1<$\frac{{e}^{x}}{x}$在(0,3)的最小值,
由f(x)=$\frac{{e}^{x}}{x}$的导数为f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
当0<x<1时,f′(x)<0,f(x)递减;
当1<x<3时,f′(x)>0,f(x)递增.
可得f(x)在x=1处取得最小值e,
即有2m+1<e,
可得m<$\frac{e-1}{2}$.
故选:A.

点评 本题考查不等式恒成立问题的解法,注意运用参数分离和构造函数法,运用导数求出单调区间和最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.为了调查高中学生是否喜欢数学与性别的关系,随机抽查男、女学生各 40 名,得到具体数据如表:
 是否喜欢数学合计
男生301040
女生202040
合计503080
(I)根据上面的列联表,能否在犯错误的概率不超过 0.025 的前提下,认为是否喜欢数学与性别有关?
(II)计算这 80 位学生不喜欢数学的频率;(III)用分层抽样的方法从不喜欢数学的男女学生中抽查 6 人进行数学问卷调查,再从中抽取 4 份问卷递交校长办,求至少抽出 3 名女生问卷的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k0[来源:]2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面α和两条直线a,b,则下列结论成立的是(  )
A.如果a∥α,b∥α,那么a∥b
B.如果a∥b,a∥α,b?α,那么b∥α
C.如果a∥b,那么α平行于经过b的任何平面
D.如果a∥α,那么a与α内的任何直线平行

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设某总体是由编号为01,02,…,39,40的40个个体组成的,利用下面的随机数表依次选取4个个体,选取方法是从随机数表第一行的第三列数字开始从左到右依次选取两个数字,则选出来的第4个个体的编号为09
0618  0765  4544  1816  5809  7983  8619
7606  8350  0310  5923  4605  0526  6238.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,设不等式组$\left\{{\begin{array}{l}{-1≤x≤1}\\{0≤y≤1}\end{array}}\right.$表示的平面区域为长方形ABCD,长方形ABCD内的曲线为抛物线y=x2的一部分,若在长方形ABCD内随机取一个点,则此点取自阴影部分的概率等于(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,设直线l:$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数)相交于A、B两点.
(1)若以坐标原点为极点,x轴的正半轴为极轴,求直线l的极坐标方程;
(2)设点P(2,$\sqrt{3}$),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,点P是半径为1的砂轮边缘上的一个质点,它从初始位置P0开始,按逆时针方向以角速度ω=1rad/s做圆周运动,记点P的纵坐标y关于时间t(t≥0,t的单位:s)的函数关系为y=f(t).
(1)求y=f(t)的表达式;
(2)在△ABC中,f(A)=$\frac{3}{5}$,f(B)=-$\frac{12}{13}$,求f(C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的各项均为正数,且a2=6,a3+a4=72.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an-n(n∈N*),求数列{bn}的前n项和${S}_{{n}_{\;}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-$\frac{1}{f(x)}$,且当x∈[0,2]时,f(x)=log2(x+1),求f(-2011)+f(2013)的值.

查看答案和解析>>

同步练习册答案