精英家教网 > 高中数学 > 题目详情
1.已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn=$\frac{3}{{a}_{n}}$,求适合方程b1b2+b2b3+…+bnbn+1=$\frac{45}{32}$的正整数n的值.

分析 (1)由a2+1,a4+1,a8+1成等比数列,建立关于d的方程,解出d,即可求数列{an}的通项公式;
(2)表示出bn,利用裂项相消法求出b1b2+b2b3+…+bnbn+1,建立关于n的方程,求解即可

解答 解:(1)设公差为为d,a1=2,且a2+1,a4+1,a8+1成等比数列,
∴(a4+1)2=(a2+1)(a8+1),
∴(3d+3)2=(3+d)(3+7d),
解得d=3,
∴an=a1+(n-1)d=2+3(n-1)=3n-1;
(2)∵数列{bn}满足bn=$\frac{3}{{a}_{n}}$,
∴bn=$\frac{3}{3n-1}$,
∴bnbn+1=$\frac{3}{3n-1}$•$\frac{3}{3n+2}$=3($\frac{1}{3n-1}$-$\frac{1}{3n+2}$)
∴b1b2+b2b3+…+bnbn+1=3($\frac{1}{2}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{8}$+••+$\frac{1}{3n-1}$-$\frac{1}{3n+2}$)=3($\frac{1}{2}$-$\frac{1}{3n+2}$)=$\frac{45}{32}$,
即$\frac{1}{3n+2}$=$\frac{1}{32}$,
解得n=10,
故正整数n的值为10.

点评 本题考查等比数列和等差数列的概念与性质,以及裂项相消法求和,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知复数$\frac{a+i}{2-i}$为纯虚数,那么实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:$\frac{cos(3π-θ)cot(π+θ)tan(-θ)}{sin(π-θ)cot(3π-θ)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式-$\frac{1}{2}$x2+3x-5>0的解集是(  )
A.{x|x<-2}B.{x|x>5}C.{x|x>-2或x>5}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow{b}$=(cosx,-1).
(1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求cos2x的值;
(2)设函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$,求当0≤x≤$\frac{π}{2}$时,函数f(x)的最大值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(a$\sqrt{x}$-$\frac{1}{\root{3}{x}}$)10展开式的常数项是840,x5的系数是32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在三棱锥S-ABC中,底面△ABC的每个顶点处的三条棱两两所成的角之和均为180°,△ABC的三条边长分别为AB=$\sqrt{3}$,AC=$\sqrt{5}$,BC=$\sqrt{6}$,则三棱锥S-ABC的体积(  )
A.2$\sqrt{2}$B.$\sqrt{10}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2+$\frac{a}{x}$在区间(1,+∞)上是增函数,则实数a的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.利用公式计算:$\frac{{A}_{n-1}^{m-1}•{A}_{n-m}^{n-m}}{{A}_{n-1}^{n-1}}$.

查看答案和解析>>

同步练习册答案