精英家教网 > 高中数学 > 题目详情
14.求函数y=2x2+lnx的二阶导数.

分析 根据导数的公式进行求导即可

解答 解:(1)∵y=2x2+lnx,
∴y′=4x+$\frac{1}{x}$,y″=4-$\frac{1}{{x}^{2}}$.

点评 本题主要考查函数的导数的求解,根据导数的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,若$2{a_{n+1}}-{a_n}=\frac{n-2}{{n({n+1})({n+2})}}$,${b_n}={a_n}-\frac{1}{{n({n+1})}}$,
(1)求证:{bn}为等比数列,并求出{an}的通项公式;
(2)若Cn=nbn,且其前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的各项都为正数,且对任意n∈N*,都有$a_{n+1}^2={a_n}{a_{n+2}}+k$(k为常数).
(1)若k=0,且a1=1,-8a2,a4,a6成等差数列,求数列{an}的前n项和Sn
(2)若$k={({a_2}-{a_1})^2}$,求证:a1,a2,a3成等差数列;
(3)已知a1=a,a2=b(a,b为常数),是否存在常数λ,使得an+an+2=λan+1对任意n∈N*都成立?若存在.求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在正方体ABCD-A1B1C1D1中,已知$\overrightarrow{{A}_{1}A}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{c}$,O为底面ABCD中心,G为△D1C1O重心,则$\overrightarrow{AG}$=(  )(用$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示)
A.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$B.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$C.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$D.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=2ex的图象在点(0,f(0))处的切线方程为2x-y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若(1+2x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则a0+a1+a3+a5=(  )
A.364B.365C.728D.730

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.曲线y=x3+x在x=1处的切线与x轴,直线x=2所围成的三角形的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在一次射击训练中,某战士连续射击了两次.设命题p是“第一次射击击中目标”,q是“第二次击中目标”.则用p,q以及逻辑联结词(¬,∧,∨)表示“两次都没有击中目标”为(?p)∧(?q)或?(p∨q).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,${a^2}+{c^2}-{b^2}=\sqrt{3}bc$,则cosA+sinC的取值范围为(  )
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

同步练习册答案