精英家教网 > 高中数学 > 题目详情
3.已知各项为正的数列{an}的前n项和为Sn,满足an=2$\sqrt{{S}_{n}}$-1,则$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值为(  )
A.4B.3C.2$\sqrt{3}$-2D.$\frac{9}{2}$

分析 an=2$\sqrt{{S}_{n}}$-1,两边平方可得:Sn=$\frac{1}{4}({a}_{n}+1)^{2}$,利用递推关系可得:(an+an-1)(an-an-1-2)=0,由已知可得:an-an-1=2,利用等差数列的推通项公式可得an,进而得到Sn.代入$\frac{2{S}_{n}+16}{{a}_{n}+3}$,变形利用基本不等式的性质即可得出.

解答 解:∵an=2$\sqrt{{S}_{n}}$-1,
∴Sn=$\frac{1}{4}({a}_{n}+1)^{2}$,
∴n≥2时,an=Sn-Sn-1=$\frac{1}{4}({a}_{n}+1)^{2}$-$\frac{1}{4}({a}_{n-1}+1)^{2}$,
化为:(an+an-1)(an-an-1-2)=0,
∵an+an-1>0,∴an-an-1=2,
又${a}_{1}=2\sqrt{{a}_{1}}$-1,解得a1=1.
∴数列{an}是等差数列,首项为1,公差为2.
∴an=1+2(n-1)=2n-1.
∴Sn=$\frac{1}{4}(2n-1+1)^{2}$=n2
∴$\frac{2{S}_{n}+16}{{a}_{n}+3}$=$\frac{2{n}^{2}+16}{2n-1+3}$=$\frac{{n}^{2}+8}{n+1}$=(n+1)+$\frac{9}{n+1}$-2≥$2\sqrt{(n+1)•\frac{9}{n+1}}$-2=4,当且仅当n=2时取等号.
∴$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值为4.
故选:A.

点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设a为正实数,则函数f(x)=a+sin$\frac{x}{a}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,则“a>1”是“a>$\frac{1}{a}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙、丙等5人站成一排,则甲、乙均不与丙相邻的概率$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:x∈{x|$\frac{1}{2}$<2x-a<1),q:x∈{x|y=log2(x2-x-6)}
(1)若a=4,判断p是q的什么条件;
(2)若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上随机取一个数x,则使tanx-1>0的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x,y满足(x-2)2+y2=3,那么$\sqrt{{x}^{2}+{y}^{2}}$的最大值是(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.1+$\sqrt{3}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下面有四个命题:
①三个平面两两互相垂直,则它们的交线也两两互相垂直;
②三条共点的直线两两互相垂直,分别由每两条直线所确定的平面也两两互相垂直;
③分别与两条互相垂直相交的直线垂直的两个平面互相垂直;
④分别经过两条互相垂直的直线的两个平面互相垂直.
其中正确的命题序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆x2+y2-2x-4y+3=0关于直线ax+by-3=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为2+$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案