精英家教网 > 高中数学 > 题目详情
在与10030°终边相同的角中,求满足下列条件的角.
(1)最大的负角;
(2)最小的正角;
(3)360°~720°的角.
考点:终边相同的角
专题:计算题
分析:根据终边相同的角之间相差周角的整数倍,我们可以表示出与10030°的角终边相同的角α的集合,然后将k=-1,k=0,k=1代入即可得出结果.
解答: 解:∵10030°=360°×27+310°
∴310° 和 10030°终边相同
其余的终边相同的角度可以写成α=360°k+310°(k∈Z)
(1)当k=-1时是最大的负角,α=-50°
(2)当k=0时是最小的正角,α=310°
(3)当k=1时,α=670°符合条件.
点评:本题考查的知识点是终边相同的角,其中根据终边相同的角之间相差周角的整数倍,表示出与30°的角终边相同的角α的集合,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={x∈N|x2+x-6<0},P={x|(x-1)(x-3)≤0},则M∩P=(  )
A、[1,2)B、[1,2]
C、{1,2}D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x︳1≤x<2},B={x︳0<x<a} (a>0为常数),求A∩B和A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(ax)-2lg(x-1),求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1≤x≤3},集合B={x|﹙x-1﹚﹙x-a﹚=0}
(1)若B⊆A,求实数a的取值范围;
(2)是否存在a∈R,使A=B成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+px-2q=0},B={x|x2+qx-4q2+2p=0},试判断“实数p=q=1”是“1∈A∩B”的什么条件,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+ax
x+2
 在(-2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数z=x2+2xy-2y2的偏导数z′x,z′y

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)的周期是2的偶函数,且当x∈[0,1]时,f(x)=x2,则函数g(x)=f(x)-|lgx|的零点有
 
个.

查看答案和解析>>

同步练习册答案