精英家教网 > 高中数学 > 题目详情
16.有3所高校欲通过三位一体招收24名学生,要求每所高校至少招收一名且人数各不相同的招收方法有475种.

分析 采用隔板法,从24名学生排列所形成的23个间隔,任插入2个隔板,分成三组,再排除都相同的,和有2个相同的,问题得以解决.

解答 解:采用隔板法,从24名学生排列所形成的23个间隔,任插入2个隔板,分成三组,共有A232=506种,
其中人数都相同的(8,8,8)有种,有2个相同的(1,1,22),(2,2,20),(3,3,18),(4,4,16),(5,5,14),(6,6,12),(7,7,10),(9,9,6),(10,10,4),
(11,11,2),共有10×3=30,
故每所高校至少招收一名且人数各不相同的招收方法有506-1-30=475,
故答案为:475

点评 本题主要考查排列组合与计数原理的有关知识点,解决此类问题的方法是:特殊元素与特殊位置优先的原则,插空法,捆绑法等方法,在解决问题时有时也运用正难则反的解题得思想方法,本题在计数时采取了排除的技巧,由于所研究的对象较为复杂,采取了列举法,这是较复杂问题计数常用的一种方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.阅读右边的程序框图,运行相应程序,输出s的值为87.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在3000与8000之间,有多少个没有重复数字的:
(1)四位偶数;
(2)能被5整除的四位奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足$\frac{z}{1-i}$=i2016+i2017(i为虚数单位),则z为(  )
A.-2B.2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F为抛物线4y2=x的焦点,点A,B都是抛物线上的点且位于x轴的两侧,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=15(O为原点),则△ABO和△AFO的面积之和的最小值为(  )
A.$\frac{1}{8}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{65}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an},Sn是{an}的前n项和,则对于任意的n∈N*,“an>0”是“Sn>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列命题
①函数f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)的图象关于x=π对称的图象的函数解析式为y=sin($\frac{x}{2}$-$\frac{π}{6}$);
②函数f(x)=$\sqrt{x-1}$+$\frac{1}{x}$在定义域上是增函数;
③函数f(x)=|log2x|-($\frac{1}{2}$)x在(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
其中真命题的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线G:y2=2px(p>0),过焦点F的动直线l与抛物线交于A,B两点,线段AB的中点为M.
(1)当直线l的倾斜角为$\frac{π}{4}$时,|AB|=16.求抛物线G的方程;
(2)对于(1)问中的抛物线G,若点N(3,0),求证:|AB|-2|MN|为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x+y+$\sqrt{2}$=0相切.A,B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E,F两点.
(1)求椭圆C的方程;
(2)当四边形AEBF面积取最大值时,求k的值.

查看答案和解析>>

同步练习册答案