精英家教网 > 高中数学 > 题目详情
17.设f1(x)=sinx,定义fn+1(x)为fn(x)的导数,即f${\;}_{n+{1}_{\;}}$(x)=fn′(x),n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2018(A)=0,则cosA的值为(  )
A.1B.-1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 根据导数公式直接进行求导,得到函数fn(x)具备周期性,然后根据周期性将条件进行化简,即可得到结论.

解答 解:∵f1(x)=sinx,fn+1(x)=f′n(x),
∴f2(x)=f′1(x)=cosx,
f3(x)=f′2(x)=-sinx,
f4(x)=f'3(x)=-cosx,
f5(x)=f′4(x)=sinx,
f6(x)=f′5(x)=cosx,
∴fn+1(x)=f′n(x),具备周期性,周期性为4.
且f1(x)+f2(x)+f3(x)+f4(x)=cosx-sinx+sinx-cosx=0,
∵f1(A)+f2(A)+…+f2018(A)=0,
∴f1(A)+f2(A)=sinA+cosA=0,
∴A=135°,故cosA=-$\frac{\sqrt{2}}{2}$,
故选:D.

点评 本题主要考查导数的计算,利用条件得到函数具备周期性是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,角α的终边OP与单位圆交于点P,角β的终边OQ与单位圆交于点Q.
(1)写出P、Q两点的坐标;
(2)试用向量的方法证明关系式:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校学生会组织部分同学,用“10分制”随机调查某社区市民的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若幸福度低于8.0,则称该人的幸福度为“一般幸福”,幸福度不低于9.5分,则称该人的幸福度为“极幸福”.现从“一般幸福”和“极幸福”的市民中随机选取2人,列出所有选取的情况并求出至少有1人是“极幸福”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a-2)>f(a-1),则实数a的取值范围是(  )
A.(-$∞,\frac{1}{2}$)∪($\frac{3}{4}$,+∞)B.($\frac{1}{2},+∞$)C.(-$∞,\frac{1}{2}$)D.(0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={x|x∈A,且x∉B},若A={1,3,5,7},B={2,3,5},则集合M的非空子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x3-ax2+x在点(1,f(1))处的切线与x+6y=0垂直,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若f(x)=log2$\frac{2+mx}{2-nx}$为x∈(-1,1)的奇函数.
(1)求m,n的值;
(2)若x$∈[\frac{1}{3},\frac{1}{2}]$,f(x)>k恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设t=${∫}_{0}^{\frac{π}{4}}$cos2xdx,若(1-$\frac{x}{t}$)2018=${a}_{0}+{a}_{1}x+{a}_{2}{x}^{2}+…+{a}_{2018}{x}^{2018}$,则a1+a2+a3+…+a2018=(  )
A.-1B.0C.1D.256

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点M是线段BC的中点,点A在直线BC外,且|$\overrightarrow{BC}$|=6,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,则|$\overrightarrow{AM}$|=3.

查看答案和解析>>

同步练习册答案