| A. | 1 | B. | -1 | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
分析 根据导数公式直接进行求导,得到函数fn(x)具备周期性,然后根据周期性将条件进行化简,即可得到结论.
解答 解:∵f1(x)=sinx,fn+1(x)=f′n(x),
∴f2(x)=f′1(x)=cosx,
f3(x)=f′2(x)=-sinx,
f4(x)=f'3(x)=-cosx,
f5(x)=f′4(x)=sinx,
f6(x)=f′5(x)=cosx,
∴fn+1(x)=f′n(x),具备周期性,周期性为4.
且f1(x)+f2(x)+f3(x)+f4(x)=cosx-sinx+sinx-cosx=0,
∵f1(A)+f2(A)+…+f2018(A)=0,
∴f1(A)+f2(A)=sinA+cosA=0,
∴A=135°,故cosA=-$\frac{\sqrt{2}}{2}$,
故选:D.
点评 本题主要考查导数的计算,利用条件得到函数具备周期性是解决本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$∞,\frac{1}{2}$)∪($\frac{3}{4}$,+∞) | B. | ($\frac{1}{2},+∞$) | C. | (-$∞,\frac{1}{2}$) | D. | (0,$\frac{1}{2}$)∪($\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 256 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com